1. (1 pt) Library/TCNJ/TCNJ_LinearSystems/problem3.pg

Give a geometric description of the following systems of equations

$$
\begin{aligned}
& -16 x+16 y=-16 \\
& \text { ? 1. }-12 x+12 y=-12 \\
& -28 x+28 y=-28 \\
& 5 x+y=7 \\
& \text { ? 2. } 2 x-5 y=2 \\
& 7 x+23 y=13 \\
& 5 x+y=7 \\
& \text { ?3. } 2 x-5 y=2 \\
& 7 x+23 y=16
\end{aligned}
$$

[^0]Assume $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ spans \mathbb{R}^{3}.
Select the best statement.

- A. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ spans \mathbb{R}^{3} unless \mathbf{u}_{4} is a scalar multiple of another vector in the set.
- B. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ never spans \mathbb{R}^{3}.
- C. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ spans \mathbb{R}^{3} unless \mathbf{u}_{4} is the zero vector.
- D. There is no easy way to determine if $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ spans \mathbb{R}^{3}.
- E. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ always spans \mathbb{R}^{3}.
- F. none of the above
$\begin{aligned} & \text { 4. (1 pt) UI/Fall14/lin span.pg } \\ & \text { Let } A=\left[\begin{array}{c}3 \\ -8 \\ -7\end{array}\right], B=\left[\begin{array}{c}3 \\ -11 \\ -9\end{array}\right] \text {, and } C=\left[\begin{array}{c}-3 \\ 5 \\ 5\end{array}\right] .\end{aligned}$
Which of the following best describes the span of the above 3 vectors?
- A. 0-dimensional point in R^{3}
- B. 1-dimensional line in R^{3}
- C. 2-dimensional plane in R^{3}
- D. R^{3}

Determine whether or not the three vectors listed above are linearly independent or linearly dependent.

- A. linearly dependent
- B. linearly independent

If they are linearly dependent, determine a non-trivial linear relation. Otherwise, if the vectors are linearly independent, enter 0 's for the coefficients, since that relationship always holds.

$$
A+\quad B+\ldots C=0 \text {. }
$$

5. (1 pt) local/Library/TCNJ/TCNJ_BasesLinearlyIndependentSet/3.pg
Check the true statements below:

- A. The columns of an invertible $n \times n$ matrix form a basis for \mathbb{R}^{n}.
- B. If B is an echelon form of a matrix A, then the pivot columns of B form a basis for ColA.
- C. The column space of a matrix A is the set of solutions of $A x=b$.
- D. If $H=\operatorname{Span}\left\{b_{1}, \ldots, b_{p}\right\}$, then $\left\{b_{1}, \ldots, b_{p}\right\}$ is a basis for H.
- E. A basis is a spanning set that is as large as possible.

6. (1 pt) local/Library/UI/4.1.23.pg

Find the null space for $A=\left[\begin{array}{lll}1 & 0 & -7 \\ 0 & 1 & -4\end{array}\right]$.
What is null (A) ?

- A. $\operatorname{span}\left\{\left[\begin{array}{c}1 \\ 0 \\ +7\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ +4\end{array}\right]\right\}$
- B. $\operatorname{span}\left\{\left[\begin{array}{l}+4 \\ +7\end{array}\right]\right\}$
- C. \mathbb{R}^{2}
- D. $\operatorname{span}\left\{\left[\begin{array}{c}+7 \\ +4 \\ 1\end{array}\right]\right\}$
- E. $\operatorname{span}\left\{\left[\begin{array}{c}+4 \\ +7 \\ 1\end{array}\right]\right\}$
- F. $\operatorname{span}\left\{\left[\begin{array}{l}+7 \\ +4\end{array}\right]\right\}$
- G. \mathbb{R}^{3}
- H. none of the above

7. (1 pt) local/Library/UI/Fall14/HW7_12.pg

Suppose that A is a 8×9 matrix which has a null space of dimension 5. The rank of $A=$

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

8. (1 pt) local/Library/UI/Fal144/HW8_5.pg

Find the determinant of the matrix
$A=\left[\begin{array}{cccc}-5 & 0 & 0 & 0 \\ 7 & 1 & 0 & 0 \\ -8 & 7 & 2 & 0 \\ -6 & 8 & 1 & -6\end{array}\right]$.
$\operatorname{det}(A)=$

- A. -400
- B. -360
- C. -288
- D. -120
- E. 0
- F. 120
- G. 60
- H. 240
- I. 360
- J. 400
- K. None of those above

If A is an $m \times n$ matrix and if the equation $A x=b$ is inconsistent for some b in \mathbb{R}^{m}, then A cannot have a pivot position in every row.

- A. True
- B. False

If the equation $A x=b$ is inconsistent, then b is not in the set spanned by the columns of A.

- A. True
- B. False

11. (1 pt) local/Library/UI/Fal114/volume1.pg

Find the volume of the parallelepiped determined by vectors
$\left[\begin{array}{r}-5 \\ 0 \\ -3\end{array}\right],\left[\begin{array}{l}0 \\ 2 \\ 0\end{array}\right]$, and $\left[\begin{array}{r}-3 \\ 5 \\ 2\end{array}\right]$

- A. 38
- B. -5
- C. -4
- D. -2
- E. -1
- F. 0
- G. 1
- H. 3
- I. 5
- J. 7
- K. None of those above

Suppose $A \vec{x}=\overrightarrow{0}$ has an infinite number of solutions, then given a vector \vec{b} of the appropriate dimension, $A \vec{x}=\vec{b}$ has

- A. No solution
- B. Unique solution
- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions
- G. no solution, a unique solution or an infinite number of solutions, depending on the system of equations
- H. none of the above

Suppose A is a square matrix and $A \vec{x}=\overrightarrow{0}$ has an infinite number of solutions, then given a vector \vec{b} of the appropriate dimension, $A \vec{x}=\vec{b}$ has

- A. No solution
- B. Unique solution
- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions
- G. no solution, a unique solution or an infinite number of solutions, depending on the system of equations
- H. none of the above

14. (1 pt) local/Library/UI/problem7.pg

A and B are $n \times n$ matrices.

Adding a multiple of one row to another does not affect the determinant of a matrix.

- A. True
- B. False

If the columns of A are linearly dependent, then $\operatorname{det} A=0$.

- A. True
- B. False
$\operatorname{det}(A+B)=\operatorname{det} A+\operatorname{det} B$.
- A. True
- B. False

The vector \vec{b} is in ColA if and only if $A \vec{v}=\vec{b}$ has a solution

- A. True
- B. False

The vector \vec{v} is in NulA if and only if $A \vec{v}=\overrightarrow{0}$

- A. True
- B. False

If $\overrightarrow{x_{1}}$ and $\overrightarrow{x_{2}}$ are solutions to $A \vec{x}=\overrightarrow{0}$, then $5 \overrightarrow{x_{1}}+4 \overrightarrow{x_{2}}$ is also a solution to $A \vec{x}=\overrightarrow{0}$.

- A. True
- B. False

Hint: (Instructor hint preview: show the student hint after 0 attempts. The current number of attempts is 0 .) Is NulA a subspace? Is NulA closed under linear combinations?

If $\overrightarrow{x_{1}}$ and $\overrightarrow{x_{2}}$ are solutions to $A \vec{x}=\vec{b}$, then $-3 \overrightarrow{x_{1}}+9 \overrightarrow{x_{2}}$ is also a solution to $A \vec{x}=\vec{b}$.

- A. True
- B. False

Hint: (Instructor hint preview: show the student hint after 0 attempts. The current number of attempts is 0 .)
Is the solution set to $A \vec{x}=\vec{b}$ a subspace even when \vec{b} is not $\overrightarrow{0}$? Is the solution set to $A \vec{x}=\vec{b}$ closed under linear combinations even when \vec{b} is not $\overrightarrow{0}$?

Find the area of the parallelogram determined by the vectors $\left[\begin{array}{c}-6 \\ 4\end{array}\right]$ and $\left[\begin{array}{c}4 \\ -2\end{array}\right]$.

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. 5

Suppose A is a 5×3 matrix. Then nul A is a subspace of R^{k} where $k=$

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

Suppose A is a 4×7 matrix. Then $\operatorname{col} A$ is a subspace of R^{k} where $k=$

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

22. ($\mathbf{1} \mathrm{pt})$ Library/Rochester/setLinearAlgebra4InverseMatrix-/ur_la-42.pg
The matrix $\left[\begin{array}{cc}8 & 1 \\ 9 & k\end{array}\right]$ is invertible if and only if $k \neq-$.
23. (1 pt $)$ Library/Rochester/setLinearAlgebra9Dependence/ur_la_9.7.pg

The vectors
$v=\left[\begin{array}{c}-4 \\ 11 \\ -10\end{array}\right], u=\left[\begin{array}{c}2 \\ -4 \\ 9+k\end{array}\right]$, and $w=\left[\begin{array}{c}2 \\ -5 \\ 4\end{array}\right]$.
are linearly independent if and only if $k \neq$
24. (1 pt) Library/Rochester/setLinearAlgebra23QuadraticForms/ur_la_23_2.pg
Find the eigenvalues of the matrix
$M=\left[\begin{array}{cc}5 & 55 \\ 55 & 5\end{array}\right]$.
Enter the two eigenvalues, separated by a comma:

Classify the quadratic form $Q(x)=x^{T} A x$:

- A. $Q(x)$ is indefinite
- B. $Q(x)$ is positive definite
- C. $Q(x)$ is negative semidefinite
- D. $Q(x)$ is negative definite
- E. $Q(x)$ is positive semidefinite

25. (1 pt) Library/Rochester/setLinearAlgebra23QuadraticForms-
/ur_la_23_3.pg
The matrix
$A=\left[\begin{array}{ccc}-2.5 & -1.5 & 0 \\ -1.5 & -2.5 & 0 \\ 0 & 0 & 2\end{array}\right]$
has three distinct eigenvalues, $\lambda_{1}<\lambda_{2}<\lambda_{3}$,
$\lambda_{1}=$ \qquad
$\lambda_{2}=$ \qquad
$\lambda_{3}=$ \qquad
Classify the quadratic form $Q(x)=x^{T} A x$:

- A. $Q(x)$ is negative definite
- B. $Q(x)$ is positive semidefinite
- C. $Q(x)$ is negative semidefinite
- D. $Q(x)$ is positive definite
- E. $Q(x)$ is indefinite

26. (1 pt) Library/TCNJ/TCNJ_BasesLinearlyIndependentSet/problem5.pg
Let W_{1} be the set: $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.
Determine if W_{1} is a basis for \mathbb{R}^{3} and check the correct answer(s) below.

- A. W_{1} is not a basis because it does not span \mathbb{R}^{3}.
- B. W_{1} is not a basis because it is linearly dependent.
- C. W_{1} is a basis.

Let W_{2} be the set: $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$.
Determine if W_{2} is a basis for \mathbb{R}^{3} and check the correct answer(s) below.

- A. W_{2} is not a basis because it does not span \mathbb{R}^{3}.
- B. W_{2} is not a basis because it is linearly dependent.
- C. W_{2} is a basis.

27. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4/2.3.42.pg

Let A be a matrix with more columns than rows.
Select the best statement.

- A. The columns of A could be either linearly dependent or linearly independent depending on the case.
- B. The columns of A are linearly independent, as long as they does not include the zero vector.
- C. The columns of A are linearly independent, as long as no column is a scalar multiple of another column in A
- D. The columns of A must be linearly dependent.
- E. none of the above

28. (1 pt$)$ Library/WHFreeman/Holt_linear_algebra/Chaps_1-4/2.3.46.pg

Let $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ be a linearly dependent set of vectors.
Select the best statement.

- A. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ is a linearly independent set of vectors unless \mathbf{u}_{4} is a linear combination of other vectors in the set.
- B. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ could be a linearly independent or linearly dependent set of vectors depending on the vectors chosen.
- C. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ is always a linearly dependent set of vectors.
- D. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ is a linearly independent set of vectors unless $\mathbf{u}_{4}=\mathbf{0}$.
- E. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ is always a linearly independent set of vectors.
- F. none of the above

29. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4/2.3.47.pg

Let $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ be a linearly independent set of vectors. Select the best statement.

- A. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is always a linearly independent set of vectors.
- B. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ could be a linearly independent or linearly dependent set of vectors depending on the vectors chosen.
- C. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is never a linearly independent set of vectors.
- D. none of the above

30. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-414.1.27.pg

Find the null space for $A=\left[\begin{array}{cc}1 & 7 \\ 3 & 7 \\ -4 & -7\end{array}\right]$.
What is null(A)?

- A. \mathbb{R}^{3}
- B. \mathbb{R}^{2}
- C. $\operatorname{span}\left\{\left[\begin{array}{l}7 \\ 1\end{array}\right]\right\}$
- D. $\operatorname{span}\left\{\left[\begin{array}{c}1 \\ 3 \\ -4\end{array}\right]\right\}$
- E. $\operatorname{span}\left\{\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\right\}$
- F. $\left\{\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\}$
- G. $\operatorname{span}\left\{\left[\begin{array}{c}-7 \\ 1\end{array}\right]\right\}$
- H. $\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 7\end{array}\right]\right\}$
- I. none of the above

[^1]? 1. If A and B are equivalent matrices, then $\operatorname{col}(A)=\operatorname{col}($ $B)$.
32. (1 pt) Library/maCalcDB/setLinearAlgebra3Matrices/ur_la_3_6.pg

If A and B are 3×2 matrices, and C is a 6×3 matrix, which of the following are defined?

- A. $A C$
- B. $C A$
- C. C^{T}
- D. $A^{T} C^{T}$
- E. $A+B$
- F. $C+B$

33. (1 pt) UI/DIAGtfproblem1.pg

A, P and D are $n \times n$ matrices.
Check the true statements below:

- A. If A is invertible, then A is diagonalizable.
- B. A is diagonalizable if and only if A has n eigenvalues, counting multiplicities.
- C. If A is diagonalizable, then A has n distinct eigenvalues.
- D. A is diagonalizable if A has n distinct eigenvectors.
- E. A is diagonalizable if A has n distinct linearly independent eigenvectors.
- F. If A is symmetric, then A is orthogonally diagonalizable.
- G. If A is diagonalizable, then A is invertible.
- H. If A is diagonalizable, then A is symmetric.
- I. A is diagonalizable if $A=P D P^{-1}$ for some diagonal matrix D and some invertible matrix P.
- J. If A is symmetric, then A is diagonalizable.
- K. If A is orthogonally diagonalizable, then A is symmetric.
- L. If there exists a basis for \mathbb{R}^{n} consisting entirely of eigenvectors of A, then A is diagonalizable.
- M. If $A P=P D$, with D diagonal, then the nonzero columns of P must be eigenvectors of A.

34. (1 pt) UI/Fal114/lin_span2.pg

Which of the following sets of vectors span R^{3} ?
-A. $\left[\begin{array}{c}-7 \\ 0 \\ 6\end{array}\right],\left[\begin{array}{l}2 \\ 3 \\ 8\end{array}\right],\left[\begin{array}{c}-5 \\ 4 \\ 9\end{array}\right]$

- B.
- C. $\left[\begin{array}{l}0 \\ 0\end{array}\right],\left[\begin{array}{l}8 \\ 2\end{array}\right]$
- D. $\left[\begin{array}{c}8 \\ 3 \\ -9\end{array}\right],\left[\begin{array}{c}6 \\ -8 \\ -2\end{array}\right],\left[\begin{array}{c}14 \\ -5 \\ -11\end{array}\right]$
- E. $\left[\begin{array}{c}6 \\ 14\end{array}\right],\left[\begin{array}{l}3 \\ 7\end{array}\right]$
- F. $\left[\begin{array}{c}-9 \\ 6\end{array}\right],\left[\begin{array}{l}-8 \\ -2\end{array}\right],\left[\begin{array}{l}-3 \\ -7\end{array}\right]$

Which of the following sets of vectors are linearly independent?

- A. $\left[\begin{array}{c}-7 \\ 0 \\ 6\end{array}\right],\left[\begin{array}{l}2 \\ 3 \\ 8\end{array}\right],\left[\begin{array}{c}-5 \\ 4 \\ 9\end{array}\right]$
- B. $\left[\begin{array}{l}1 \\ 9\end{array}\right],\left[\begin{array}{l}-6 \\ -1\end{array}\right]$
- C. $\left[\begin{array}{l}0 \\ 0\end{array}\right],\left[\begin{array}{l}8 \\ 2\end{array}\right]$
- D. $\left[\begin{array}{c}8 \\ 3 \\ -9\end{array}\right],\left[\begin{array}{c}6 \\ -8 \\ -2\end{array}\right],\left[\begin{array}{c}14 \\ -5 \\ -11\end{array}\right]$
- E. $\left[\begin{array}{c}6 \\ 14\end{array}\right],\left[\begin{array}{l}3 \\ 7\end{array}\right]$
- F. $\left[\begin{array}{c}-9 \\ 6\end{array}\right],\left[\begin{array}{l}-8 \\ -2\end{array}\right],\left[\begin{array}{l}-3 \\ -7\end{array}\right]$

35. (1 pt) UI/orthog.pg

All vectors and subspaces are in \mathbb{R}^{n}.
Check the true statements below:

- A. If A is symmetric, $A \mathbf{v}=r \mathbf{v}, A \mathbf{w}=s \mathbf{w}$ and $r \neq s$, then $\mathbf{v} \cdot \mathbf{w}=0$.
- B. If $W=\operatorname{Span}\left\{x_{1}, x_{2}, x_{3}\right\}$ and if $\left\{v_{1}, v_{2}, v_{3}\right\}$ is an orthonormal set in W, then $\left\{v_{1}, v_{2}, v_{3}\right\}$ is an orthonormal basis for W.
- C. If $A \mathbf{v}=r \mathbf{v}$ and $A \mathbf{w}=s \mathbf{w}$ and $r \neq s$, then $\mathbf{v} \cdot \mathbf{w}=0$.
- D. If x is not in a subspace W, then $x-\operatorname{proj}_{W}(x)$ is not zero.
- E. If $\left\{v_{1}, v_{2}, v_{3}\right\}$ is an orthonormal set, then the set $\left\{v_{1}, v_{2}, v_{3}\right\}$ is linearly independent.
- F. In a $Q R$ factorization, say $A=Q R$ (when A has linearly independent columns), the columns of Q form an orthonormal basis for the column space of A.
- G. If \mathbf{v} and \mathbf{w} are both eigenvectors of A and if A is symmetric, then $\mathbf{v} \cdot \mathbf{w}=0$.

36. (1 pt) local/Library/UI/2.3.49.pg

Let \mathbf{u}_{4} be a linear combination of $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$.
Select the best statement.

- A. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ could be a linearly dependent or linearly independent set of vectors depending on the vectors chosen.
- B. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ is never a linearly independent set of vectors.
- C. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is a linearly dependent set of vectors.
- D. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ is always a linearly independent set of vectors.
- E. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is a linearly dependent set of vectors unless one of $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is the zero vector.
- F. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is never a linearly dependent set of vectors.
- G. none of the above

37. (1 pt) local/Library/UI/Fall14/HW7_6.pg

If A is an $n \times n$ matrix and $\mathbf{b} \neq 0$ in \mathbb{R}^{n}, then consider the set of solutions to $A \mathbf{x}=\mathbf{b}$.

Select true or false for each statement.
The set contains the zero vector

- A. True
- B. False

This set is closed under vector addition

- A. True
- B. False

This set is closed under scalar multiplications

- A. True
- B. False

This set is a subspace

- A. True
- B. False

38. (1 pt) local/Library/UI/Fall14/HW7_11.pg

Find all values of x for which $\operatorname{rank}(A)=2$.

$$
\begin{aligned}
& \mathrm{A}=\left[\begin{array}{cccc}
1 & 1 & 0 & 7 \\
2 & 4 & \mathrm{x} & 21 \\
1 & 7 & 6 & 28
\end{array}\right]
\end{aligned}
$$

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

39. (1 pt) local/Library/UI/Fal114/HW8_7.pg

Suppose that a 4×4 matrix A with rows v_{1}, v_{2}, v_{3}, and v_{4} has determinant $\operatorname{det} A=6$. Find the following determinants:
$B=\left[\begin{array}{c}v_{1} \\ v_{2} \\ 9 v_{3} \\ v_{4}\end{array}\right] \operatorname{det}(B)=$

- A. -18
- B. -15
- C. -12
- D. 54
- E. -9
- F. 0
- G. 9
- H. 12
- I. 15
- J. 18
- K. None of those above
$C=\left[\begin{array}{l}v_{4} \\ v_{3} \\ v_{2} \\ v_{1}\end{array}\right] \operatorname{det}(C)=$
- A. -18
- B. 6
- C. -9
- D. -3
- E. 0
- F. 3
- G. 9
- H. 12
- I. 18
- J. None of those above
$D=\left[\begin{array}{c}v_{1}+3 v_{3} \\ v_{2} \\ v_{3} \\ v_{4}\end{array}\right]$
$\operatorname{det}(D)=$
- A. -18
- B. 6
- C. -9
- D. -3
- E. 0
- F. 3
- G. 9
- H. 12
- I. 18
- J. None of those above

A vector b is a linear combination of the columns of a ma$\operatorname{trix} A$ if and only if the equation $A x=b$ has at least one solution.

- A. True
- B. False

Any linear combination of vectors can always be written in the form $A x$ for a suitable matrix A and vector x.

- A. True
- B. False

42. (1 pt) local/Library/UI/Fall14/quiz2_9.pg

Supppose A is an invertible $n \times n$ matrix and v is an eigenvector of A with associated eigenvalue -5 . Convince yourself that v is an eigenvector of the following matrices, and find the associated eigenvalues:

1. A^{4}, eigenvalue $=$

- A. 16
- B. 81
- C. 125
- D. 216
- E. 1024
- F. 625
- G. 2000
- H. None of those above

2. A^{-1}, eigenvalue $=$

- A. -0.5
- B. -0.333
- C. -0.2
- D. -0.125
- E. 0
- F. 0.125
- G. 0.333
- H. 0.5
- I. None of those above

3. $A+9 I_{n}$, eigenvalue $=$

- A. -8
- B. -4
- C. -5
- D. 0
- E. 2
- F. 4
- G. 10
- H. None of those above

4. $6 A$, eigenvalue $=$

- A. -40
- B. -36
- C. -28
- D. -30
- E. -12
- F. 0
- G. 24
- H. 36
- I. None of those above

43. (1 pt) local/Library/UI/Fall14/quiz2_10.pg

If $v_{1}=\left[\begin{array}{c}3 \\ -1\end{array}\right]$ and $v_{2}=\left[\begin{array}{l}-2 \\ -1\end{array}\right]$
are eigenvectors of a matrix A corresponding to the eigenvalues $\lambda_{1}=1$ and $\lambda_{2}=-4$, respectively, then a. $A\left(v_{1}+v_{2}\right)=$

- A. $\left[\begin{array}{c}-3 \\ 5\end{array}\right]$
- B. $\left[\begin{array}{c}-2 \\ 4\end{array}\right]$
- C. $\left[\begin{array}{c}-6 \\ 5\end{array}\right]$
- D. $\left[\begin{array}{c}10 \\ 6\end{array}\right]$
- E. $\left[\begin{array}{c}12 \\ 4\end{array}\right]$
- F. $\left[\begin{array}{c}11 \\ 3\end{array}\right]$
- G. None of those above
b. $A\left(3 v_{1}\right)=$
- A. $\left[\begin{array}{l}-12 \\ -12\end{array}\right]$
- B. $\left[\begin{array}{c}-2 \\ 8\end{array}\right]$
- C. $\left[\begin{array}{c}-6 \\ 4\end{array}\right]$
- D. $\left[\begin{array}{c}10 \\ 6\end{array}\right]$
- E. $\left[\begin{array}{c}9 \\ -3\end{array}\right]$
- F. $\left[\begin{array}{c}12 \\ 4\end{array}\right]$
- G. $\left[\begin{array}{c}11 \\ 3\end{array}\right]$
- H. None of those above
be eigenvectors of the matrix A which correspond to the eigenvalues $\lambda_{1}=-3, \lambda_{2}=2$, and $\lambda_{3}=4$, respectively, and let
$v=\left[\begin{array}{c}3 \\ 5 \\ -4\end{array}\right]$.
Express v as a linear combination of v_{1}, v_{2}, and v_{3}, and find $A v$.

1. If $v=c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}$, then $\left(c_{1}, c_{2}, c_{3}\right)=$

- A. $(1,2,2)$
- B. $(-3,2,4)$
- C. $(-4,7,3)$
- D. $(-2,1,2)$
- E. $(0,1,2)$
- F. $(4,-1,5)$
- G. None of above

2. $A v=$
-A. $\left[\begin{array}{c}-12 \\ 7 \\ -12\end{array}\right]$

- B.

8

- C.

4
D. $\left[\begin{array}{c}10 \\ 0 \\ 6\end{array}\right]$

- E.

- F. $\left[\begin{array}{c}12 \\ 8 \\ 4\end{array}\right]$
- G
$\left[\begin{array}{c}-7 \\ -3 \\ 12\end{array}\right]$
- H. None of those above

Suppose a coefficient matrix A contains a pivot in every row. Then $A \vec{x}=\vec{b}$ has

- A. No solution
- B. Unique solution
- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions
- G. no solution, a unique solution or an infinite number of solutions, depending on the system of equations
- H. none of the above

Suppose a coefficient matrix A contains a pivot in every column. Then $A \vec{x}=\vec{b}$ has

- A. No solution
- B. Unique solution
- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions
- G. no solution, a unique solution or an infinite number of solutions, depending on the system of equations
- H. none of the above

47. (1 pt) local/Library/UI/MatrixAlgebra/Euclidean/2.3.43.pg

Let A be a matrix with linearly independent columns.
Select the best statement.

- A. The equation $A \mathbf{x}=\mathbf{0}$ never has nontrivial solutions.
- B. The equation $A \mathbf{x}=\mathbf{0}$ has nontrivial solutions precisely when it is a square matrix.
- C. There is insufficient information to determine if such an equation has nontrivial solutions.
- D. The equation $A \mathbf{x}=\mathbf{0}$ has nontrivial solutions precisely when it has more columns than rows.
- E. The equation $A \mathbf{x}=\mathbf{0}$ has nontrivial solutions precisely when it has more rows than columns.
- F. The equation $A \mathbf{x}=\mathbf{0}$ always has nontrivial solutions.
- G. none of the above

48. (1 pt) local/Library/UI/eigenTF.pg

A is $n \times n$ an matrices.
Check the true statements below:

- A. 0 is an eigenvalue of A if and only if $A x=0$ has a nonzero solution
- B. 0 can never be an eigenvalue of A.
- C. The vector $\mathbf{0}$ is an eigenvector of A if and only if $\operatorname{det}(A)=0$
- D. The vector $\mathbf{0}$ can never be an eigenvector of A
- E. There are an infinite number of eigenvectors that correspond to a particular eigenvalue of A.
- F. 0 is an eigenvalue of A if and only if the columns of A are linearly dependent.
- G. 0 is an eigenvalue of A if and only if $\operatorname{det}(A)=0$
- H. A will have at most n eigenvalues.
- I. The eigenspace corresponding to a particular eigenvalue of A contains an infinite number of vectors.
- J. A will have at most n eigenvectors.
- K. The vector $\mathbf{0}$ is an eigenvector of A if and only if the columns of A are linearly dependent.
- L. The vector $\mathbf{0}$ is an eigenvector of A if and only if $A x=0$ has a nonzero solution
- M. 0 is an eigenvalue of A if and only if $A x=0$ has an infinite number of solutions

If $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}$ are eigenvectors of A corresponding to eigenvalue λ_{0}, then $6 \overrightarrow{v_{1}}+8 \overrightarrow{v_{2}}$ is also an eigenvector of A corresponding to eigenvalue λ_{0} when $6 \overrightarrow{v_{1}}+8 \overrightarrow{v_{2}}$ is not $\overrightarrow{0}$.

- A. True
- B. False

Hint: (Instructor hint preview: show the student hint after 0 attempts. The current number of attempts is 0 .)
Is an eigenspace a subspace? Is an eigenspace closed under linear combinations?
Also, is $6 \overrightarrow{v_{1}}+8 \overrightarrow{v_{2}}$ nonzero?
Use Cramer's rule to solve the following system of equations for x :

$$
\begin{array}{r}
4 x-2 y=-14 \\
-1 x+1 y=4
\end{array}
$$

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

Let $A=\left[\begin{array}{ccc}3 & -9 & -4 \\ 0 & 7 & 5 \\ 0 & 0 & 3\end{array}\right]$. Is $A=$ diagonalizable?

- A. yes
- B. no
- C. none of the above

Let $A=\left[\begin{array}{ccc}-5 & -18 & -9 \\ 0 & 1 & 3 \\ 0 & 0 & -5\end{array}\right]$. Is $A=$ diagonalizable?

- A. yes
- B. no
- C. none of the above
$\operatorname{Let} A=\left[\begin{array}{llll}3.55384615384615 & -0.138461538461538 & 2.1560439560 \text { G. } 2 \\ 3.13846153846154 & 2.21538461538462 & -4.90549456549451 \\ 6.46153846153846 & -1.61538461538462 & -3.50769230769 \text { Rone }\end{array}\right]$ ff the above
and let $P=\left[\begin{array}{ccc}-1 & 9 & 5 \\ -4 & -2 & -7 \\ 0 & 7 & -7\end{array}\right]$.
Suppose $A=P D P^{-1}$. Then if $d_{i i}$ are the diagonal entries of $D, d_{11}=$,
- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. 5

Hint: (Instructor hint preview: show the student hint after 0 attempts. The current number of attempts is 0 .)
Use definition of eigenvalue since you know an eigenvector corresponding to eigenvalue d_{11}.
Calculate the determinant of $\left[\begin{array}{cc}2.55555555555556 & 5 \\ 5 & 9\end{array}\right]$.

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. 5

Suppose $A\left[\begin{array}{c}5 \\ 4 \\ -1\end{array}\right]=\left[\begin{array}{c}-10 \\ -8 \\ 2\end{array}\right]$. Then an eigenvalue of A
is

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1

Suppose u and v are eigenvectors of A with eigenvalue 2 and w is an eigenvector of A with eigenvalue 3. Determine which of the following are eigenvectors of A and their corresponding eigenvalues.
(a.) If $4 v$ an eigenvector of A, determine its eigenvalue. Else state it is not an eigenvector of A.

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. $4 v$ need not be an eigenvector of A
(b.) If $7 u+4 v$ an eigenvector of A, determine its eigenvalue. Else state it is not an eigenvector of A.
- A. -4
- B. -3
-C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. $7 u+4 v$ need not be an eigenvector of A
(c.) If $7 u+4 w$ an eigenvector of A, determine its eigenvalue. Else state it is not an eigenvector of A.
- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. $7 u+4 w$ need not be an eigenvector of A

If the characteristic polynomial of $A=(\lambda+6)^{1}(\lambda-7)^{2}(\lambda+$ $6)^{2}$, then the algebraic multiplicity of $\lambda=7$ is

- A. 0
- B. 1
- C. 2
- D. 3
- E. 0 or 1
- F. 0 or 2
- G. 1 or 2
- H. 0,1 , or 2
- I. $0,1,2$, or 3
- J. none of the above

If the characteristic polynomial of $A=(\lambda-4)^{5}(\lambda+3)^{2}(\lambda-$ $1)^{8}$, then the geometric multiplicity of $\lambda=-3$ is

- A. 0
- B. 1
- C. 2
- D. 3
- E. 0 or 1
- F. 0 or 2
- G. 1 or 2
- H. 0,1 , or 2
- I. $0,1,2$, or 3
- J. none of the above

[^0]: 2. (1 pt) Library/TCNJ/TCNJ_MatrixEquations/problem4.pg

 Let $A=\left[\begin{array}{ccc}3 & -3 & 4 \\ -3 & -1 & -1 \\ -4 & -5 & 3\end{array}\right]$ and $x=\left[\begin{array}{c}-1 \\ 2 \\ 5\end{array}\right]$.
 ? 1. What does $A x$ mean?
 3. ($\mathbf{1} \mathrm{pt}$) Library/WHFreeman/Holt_linear_algebra/Chaps_1-412.2.57.pg

[^1]: 31. ($\mathbf{1} \mathrm{pt}$) Library/WHFreeman/Holt_linear_algebra/Chaps_1-414.3.47.pg

 Indicate whether the following statement is true or false.

