me me ft-uiowa-math2550 Assignment OptionalFinalExamReviewMultChoiceLongForm due 12/31/2014 at 05:58pm CST

1. (1 pt) Library/ASU-topics/set119MatrixAlgebra/p13.pg Consider the following two systems. (a)

$$\begin{cases} x+4y = 3\\ -3x-9y = -3 \end{cases}$$

(b)

$$\begin{cases} x+4y = -2\\ -3x-9y = 4 \end{cases}$$

(i) Find the inverse of the (common) coefficient matrix of the two systems.

(ii) Find the solutions to the two systems by using the inverse, i.e. by evaluating $A^{-1}B$ where *B* represents the right hand side

(i.e.
$$B = \begin{bmatrix} 5 \\ -3 \end{bmatrix}$$
 for system (a) and $B = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$ for system
(b)).
Solution to system (a): $x = ___$, $y = ___$

Solution to system (a): $x = \underline{\qquad}, y = \underline{\qquad}$ Solution to system (b): $x = \underline{\qquad}, y = \underline{\qquad}$

2. (1 pt) Library/NAU/setLinearAlgebra/m1.pg Find the inverse of *AB* if $A^{-1} = \begin{bmatrix} 4 & 4 \\ -5 & 3 \end{bmatrix}$ and $B^{-1} = \begin{bmatrix} 3 & -2 \\ -2 & 5 \end{bmatrix}$.

$$(AB)^{-1} = \begin{bmatrix} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

5. (1 pt) Library/Rochester/setLinearAlgebra4InverseMatrix-/ur_Ch2_1_4.pg

Are the following matrices invertible? Enter "Y" or "N". You must get all of the answers correct to receive credit.

6. (1 pt) Library/Rochester/setLinearAlgebra4InverseMatrix-/ur_la_4_2.pg

The matrix $\begin{bmatrix} 4 & -6 \\ 9 & k \end{bmatrix}$ is invertible if and only if $k \neq$ ____.

7. (1 pt) Library/Rochester/setLinearAlgebra4InverseMatrix-/ur_la_4_11.pg If $A = \begin{bmatrix} 5e^{3t}\sin(9t) & 5e^{4t}\cos(9t) \\ 4e^{3t}\cos(9t) & -4e^{4t}\sin(9t) \end{bmatrix}$ then $A^{-1} = \begin{bmatrix} \underline{\qquad} & \underline{\qquad} \end{bmatrix}$.

8. (1 pt) Library/Rochester/setLinearAlgebra9Dependence-/ur_la_9_7.pg

The vectors

$$v = \begin{bmatrix} -2 \\ -4 \\ -4 \end{bmatrix}$$
, $u = \begin{bmatrix} 4 \\ 0 \\ -18 + k \end{bmatrix}$, and $w = \begin{bmatrix} 4 \\ 2 \\ -4 \end{bmatrix}$
are linearly independent if and only if $k \neq$ ______

9. (1 pt) Library/Rochester/setLinearAlgebra9Dependence-/ur_la_9_10.pg

Express the vector
$$v = \begin{bmatrix} 22\\ 16 \end{bmatrix}$$
 as a linear combination of $x = \begin{bmatrix} 4\\ 1 \end{bmatrix}$ and $y = \begin{bmatrix} 3\\ 6 \end{bmatrix}$.
 $v = __x + __y$.

10. (1 pt) Library/Rochester/setLinearAlgebra23QuadraticForms-/ur_la_23_2.pg

Find the eigenvalues of the matrix

$$M = \left[\begin{array}{rrr} 30 & -40 \\ -40 & -30 \end{array} \right]$$

Enter the two eigenvalues, separated by a comma:

13. (1 pt) Library/TCNJ/TCNJ_LinearIndependence/problem3.pg

Classify the quadratic form $Q(x) = x^T A x$:

- A. Q(x) is positive semidefinite
- B. Q(x) is negative semidefinite
- C. Q(x) is negative definite
- D. Q(x) is indefinite
- E. Q(x) is positive definite

11. (1 pt) Library/Rochester/setLinearAlgebra23QuadraticForms-/ur_la_23_3.pg

The matrix 3 -1 0 $\begin{array}{cccc} -1 & 3 & 0 \\ 0 & 0 & 5 \end{array}$ A =has three distinct eigenvalues, $\lambda_1 < \lambda_2 < \lambda_3$, $\lambda_1 = \underline{\quad},$

$$\lambda_2 =$$

 $\lambda_2 = \underline{\qquad}, \lambda_3 = \underline{\qquad}.$

Classify the quadratic form $Q(x) = x^T A x$:

- A. Q(x) is negative definite
- B. Q(x) is positive definite
- C. Q(x) is positive semidefinite
- D. Q(x) is negative semidefinite
- E. Q(x) is indefinite

12. (1 pt) Library/TCNJ/TCNJ_BasesLinearlyIndependentSet-/problem5.pg

Let W_1 be the set: $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ Determine if W_1 is a basis for \mathbb{R}^3 and check the correct answer(s) below.

- A. W_1 is not a basis because it is linearly dependent.
- B. W_1 is not a basis because it does not span \mathbb{R}^3 .
- C. W_1 is a basis.

Let W_2 be the set: $\begin{vmatrix} 1 \\ 0 \\ 1 \end{vmatrix}$, $\begin{vmatrix} 0 \\ 0 \\ 0 \end{vmatrix}$, $\begin{vmatrix} 0 \\ 0 \\ 0 \end{vmatrix}$.

Determine if W_2 is a basis for \mathbb{R}^3 and check the correct answer(s) below.

- A. W_2 is not a basis because it does not span \mathbb{R}^3 .
- B. W_2 is a basis.
- C. W_2 is not a basis because it is linearly dependent.

If k is a real number, then the vectors (1,k), (k, 3k+40) are linearly independent precisely when

 $k \neq a, b,$ where $a = \underline{\quad}, b = \underline{\quad}, and a < b$.

14. (1 pt) Library/TCNJ/TCNJ_LinearSystems/problem1.pg

Determine whether the following system has no solution, an infinite number of solutions or a unique solution.

-5x - 3y =9 ? 1. 6x + 2y =6 +1y =7x18 -5x - 3y =9 ? 2. 6x + 2y =6 7x + 1y =21 8*x* -16y-8-6x + 12y6 14x-28y-14

15. (1 pt) Library/TCNJ/TCNJ_LinearSystems/problem2.pg

Determine whether the following system has no solution, an infinite number of solutions or a unique solution.

30x + 18y - 24z = 18? 1. 6y — 10x +8z =8 3x - 6y + 2z = 3? 2. 3x - 5y + 7z = 630x + 18y - 24z = 18? 3. 10x + 6y -8z =6

16. (1 pt) Library/TCNJ/TCNJ_LinearSystems/problem3.pg Give a geometric description of the following systems of equations

17. (1 pt) Library/TCNJ/TCNJ_LinearSystems/problem4.pg Give a geometric description of the following system of equations

2

?2.

$$2x + 4y - 6z = 12$$
 $-3x - 6y + 9z = 16$

 ?3.
 $2x + 4y - 6z = 12$
 $-x + 5y - 9z = 1$

18. (1 pt) Library/TCNJ/TCNJ_LinearSystems/problem11.pg Give a geometric description of the following systems of equations.

21	Ĵ	x –	- 9y	=	-2
· · ·	-6.	x –	- 6y	=	3
20	2x	_	10 y	=	-10
: 2.	5x	—	25 y	=	-25
22	2x	_	10 y	=	-10
<u> </u>	5x	_	25 y	=	-28

19. (1 pt) Library/TCNJ/TCNJ_MatrixEquations/problem4.pg

	-5	2	4		2	
Let $A =$	-4	4	-3	and $x =$	3	
	4	2	1		-4	
	-		-			

? 1. What does Ax mean?

20. (1 pt) Library/TCNJ/TCNJ_MatrixEquations/problem13.pg Do the following sets of vectors span \mathbb{R}^3 ?

 $A = \begin{bmatrix} -5 & -6 \\ -3 & 1 \end{bmatrix},$ then $A^{-1} = \begin{bmatrix} \hline \\ -1 \\ -1 \end{bmatrix},$ Given $\vec{b} = \begin{bmatrix} -1 \\ -1 \end{bmatrix},$ solve $A\vec{x} = \vec{b}.$ $\vec{x} = \begin{bmatrix} \hline \\ -1 \end{bmatrix}.$

22. (1 pt) Library/TCNJ/TCNJ_VectorEquations/problem5.pg

Let $H = span \{u, v\}$. For each of the following sets of vectors determine whether *H* is a line or a plane.

?1.
$$u = \begin{bmatrix} -2 \\ -1 \\ -5 \end{bmatrix}$$
 $v = \begin{bmatrix} -7 \\ -2 \\ -7 \end{bmatrix}$

 ?2. $u = \begin{bmatrix} -1 \\ -3 \\ -2 \end{bmatrix}$
 $v = \begin{bmatrix} 3 \\ 9 \\ 6 \end{bmatrix}$

 ?3. $u = \begin{bmatrix} 5 \\ -5 \\ 3 \end{bmatrix}$
 $v = \begin{bmatrix} 20 \\ -19 \\ 11 \end{bmatrix}$

 ?4. $u = \begin{bmatrix} 8 \\ 5 \\ 3 \end{bmatrix}$
 $v = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

23. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4-/2.2.8.pg

Let
$$\mathbf{a}_1 = \begin{bmatrix} 7 \\ 4 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 21 \\ 12 \end{bmatrix}$

Is **b** in the span of of \mathbf{a}_1 ?

- A. Yes, **b** is in the span.
- B. No, **b** is not in the span.
- C. We cannot tell if **b** is in the span.

Either fill in the coefficients of the vector equation, or enter "NONE" if no solution is possible.

24. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4-/2.2.31.pg

Let
$$A = \begin{bmatrix} -5 & 20 \\ 5 & -32 \\ 1 & -9 \end{bmatrix}$$
.

We want to determine if the system $A\mathbf{x} = \mathbf{b}$ has a solution for every $\mathbf{b} \in \mathbb{R}^3$.

Select the best answer.

- A. There is not a solution for every $\mathbf{b} \in \mathbb{R}^3$ since 2 < 3.
- B. There is a solution for every **b** ∈ ℝ³ but we need to row reduce *A* to show this.
- C. There is a solution for every $\mathbf{b} \in \mathbb{R}^3$ since 2 < 3
- D. There is a not solution for every b ∈ ℝ³ but we need to row reduce A to show this.
- E. We cannot tell if there is a solution for every $\mathbf{b} \in \mathbb{R}^3$.

25. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4-/2.2.56.pg

What conditions on a matrix *A* insures that $A\mathbf{x} = \mathbf{b}$ has a solution for all **b** in \mathbb{R}^n ?

Select the best statement. (The best condition should work with any positive integer n.)

- A. The equation will have a solution for all **b** in \mathbb{R}^n as long as the columns of A do not include the zero column.
- B. The equation will have a solution for all **b** in \mathbb{R}^n as long as the columns of A span \mathbb{R}^n .
- C. The equation will have a solution for all **b** in \mathbb{R}^n as long as no column of A is a scalar multiple of another column.
- D. There is no easy test to determine if the equation will have a solution for all **b** in \mathbb{R}^n .
- E. none of the above

26. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4-/2.2.57.pg

Assume $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ spans \mathbb{R}^3 . Select the best statement.

- A. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ always spans \mathbb{R}^3 .
- B. {u₁, u₂, u₃, u₄} spans ℝ³ unless u₄ is the zero vector.
 C. {u₁, u₂, u₃, u₄} spans ℝ³ unless u₄ is a scalar multiple of another vector in the set.
- D. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ never spans \mathbb{R}^3 .
- E. There is no easy way to determine if $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ spans \mathbb{R}^3 .
- F. none of the above

27. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4-/2.2.58.pg

Assume $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ does not span \mathbb{R}^3 . Select the best statement.

- A. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ always spans \mathbb{R}^3 .
- B. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ may, but does not have to, span \mathbb{R}^3 .
- C. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ never spans \mathbb{R}^3 .
- D. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ spans \mathbb{R}^3 unless \mathbf{u}_4 is the zero vector.
- E. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ spans \mathbb{R}^3 unless \mathbf{u}_4 is a scalar multiple of another vector in the set.
- F. none of the above

28. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4-/2.3.40.pg

Let **S** be a set of *m* vectors in \mathbb{R}^n with m > n. Select the best statement.

- A. The set **S** is linearly dependent.
- B. The set S is linearly independent, as long as no vector in **S** is a scalar multiple of another vector in the set.
- C. The set S is linearly independent.
- D. The set S could be either linearly dependent or linearly independent, depending on the case.

- E. The set S is linearly independent, as long as it does not include the zero vector.
- F. none of the above

29. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4-/2.3.41.pg

Let *A* be a matrix with more rows than columns. Select the best statement.

- A. The columns of A are linearly independent, as long as they does not include the zero vector.
- B. The columns of A must be linearly dependent.
- C. The columns of A must be linearly independent.
- D. The columns of A are linearly independent, as long as no column is a scalar multiple of another column in Α
- E. The columns of A could be either linearly dependent or linearly independent depending on the case.
- F. none of the above

30. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4-/2.3.42.pg

Let *A* be a matrix with more columns than rows. Select the best statement.

- A. The columns of A could be either linearly dependent or linearly independent depending on the case.
- B. The columns of A are linearly independent, as long as no column is a scalar multiple of another column in A
- C. The columns of A are linearly independent, as long as they does not include the zero vector.
- D. The columns of A must be linearly dependent.
- E. none of the above

31. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4-/2.3.46.pg

Let $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ be a linearly dependent set of vectors. Select the best statement.

- A. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ is a linearly independent set of vectors unless \mathbf{u}_4 is a linear combination of other vectors in the set.
- B. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ could be a linearly independent or linearly dependent set of vectors depending on the vectors chosen.
- C. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ is always a linearly dependent set of vectors.
- D. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ is a linearly independent set of vectors unless $\mathbf{u}_4 = \mathbf{0}$.
- E. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ is always a linearly independent set of vectors.

• F. none of the above

32. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4-/2.3.47.pg

Let $\{u_1, u_2, u_3, u_4\}$ be a linearly independent set of vectors. Select the best statement.

- A. {**u**₁, **u**₂, **u**₃} could be a linearly independent or linearly dependent set of vectors depending on the vectors chosen.
- B. {**u**₁, **u**₂, **u**₃} is never a linearly independent set of vectors.
- C. {**u**₁, **u**₂, **u**₃} is always a linearly independent set of vectors.
- D. none of the above

33. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4-/3.3.42.pg

A must be a square matrix to be invertible. ?

34. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4-/4.1.22.pg

Find the null space for $A = \begin{bmatrix} 9 & 2 \\ 7 & 6 \end{bmatrix}$. What is null(*A*)?

- A. span $\left\{ \begin{bmatrix} 7\\9 \end{bmatrix} \right\}$
- B. span $\left\{ \begin{bmatrix} -2\\ 9 \end{bmatrix} \right\}$ • C. span $\left\{ \begin{bmatrix} 9\\ 2 \end{bmatrix} \right\}$
- C. span $\left\{ \begin{bmatrix} 2 \end{bmatrix} \right\}$ • D. span $\left\{ \begin{bmatrix} 9 \\ 7 \end{bmatrix} \right\}$

•
$$\mathbf{E} \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$$

$$= \begin{bmatrix} 0 \end{bmatrix}$$

- F. \mathbb{R}^2
- G. span $\left\{ \begin{vmatrix} -7 \\ 9 \end{vmatrix} \right\}$
- H. none of the above

35. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4-/4.1.27.pg

Find the null space for $A = \begin{bmatrix} 2 & -3 \\ 1 & 4 \\ -7 & -4 \end{bmatrix}$.

What is null(A)?

/4.1.28.pg

36. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4-

Find the null space for $A = \begin{bmatrix} 3 & -15 \\ 2 & -10 \\ 5 & -25 \end{bmatrix}$. What is null(*A*)?

• A. span
$$\left\{ \begin{bmatrix} -25\\5 \end{bmatrix} \right\}$$

• B. \mathbb{R}^2
• C. \mathbb{R}^3
• D. span $\left\{ \begin{bmatrix} +5\\1 \end{bmatrix} \right\}$
• E. span $\left\{ \begin{bmatrix} 0\\0 \end{bmatrix} \right\}$
• F. span $\left\{ \begin{bmatrix} 0\\0\\0 \end{bmatrix} \right\}$
• G. span $\left\{ \begin{bmatrix} 3\\2\\5 \end{bmatrix} \right\}$
• H. none of the above

37. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4-/4.1.30.pg

Find the null space for $A = \begin{bmatrix} 1 & 2 & 9 \\ -6 & -2 & -24 \\ -1 & 4 & 9 \end{bmatrix}$. What is null(*A*)?

• A. span
$$\left\{ \begin{bmatrix} 1\\ -6\\ -1 \end{bmatrix} \right\}$$

• B. span $\left\{ \begin{bmatrix} 1\\ 2\\ 9 \end{bmatrix} \right\}$

5

• G. none of the above

38. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4-/4.2.32a.pg

Find a basis for the null space of matrix A.

39. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4-/4.3.47.pg

Indicate whether the following statement is true or false.

? 1. If A and B are equivalent matrices, then col(A) = col(B).

40. (1 pt) Library/maCalcDB/setLinearAlgebra3Matrices/ur_la_3_6.pg

If *A* and *B* are 4×9 matrices, and *C* is a 2×4 matrix, which of the following are defined?

•	A.	B^T
---	----	-------

- B. C A
- C. A B
- D. *CB*
- E. AB^T
- F. AC

41. (1 pt) Library/maCalcDB/setLinearAlgebra4InverseMatrix-/ur_la_4_8.pg

Determine which of the formulas hold for all invertible $n \times n$ matrices A and B

- A. A^2B^9 is invertible
- B. $(A + A^{-1})^4 = A^4 + A^{-4}$
- C. $(I_n A)(I_n + A) = I_n A^2$
- D. $(A+B)(A-B) = A^2 B^2$
- E. AB = BA
- F. $A + I_n$ is invertible

42. (1 pt) UI/DIAGtfproblem1.pg

A, P and D are $n \times n$ matrices.

Check the true statements below:

- A. If A is diagonalizable, then A has n distinct eigenvalues.
- B. If *A* is invertible, then *A* is diagonalizable.
- C. A is diagonalizable if A has n distinct linearly independent eigenvectors.
- D. If A is diagonalizable, then A is invertible.
- E. If A is orthogonally diagonalizable, then A is symmetric.
- F. A is diagonalizable if A has n distinct eigenvectors.
- G. If AP = PD, with D diagonal, then the nonzero columns of P must be eigenvectors of A.
- H. If there exists a basis for ℝⁿ consisting entirely of eigenvectors of A, then A is diagonalizable.
- I. If A is symmetric, then A is diagonalizable.
- J. A is diagonalizable if and only if A has n eigenvalues, counting multiplicities.
- K. A is diagonalizable if $A = PDP^{-1}$ for some diagonal matrix D and some invertible matrix P.
- L. If A is symmetric, then A is orthogonally diagonalizable.
- M. If A is diagonalizable, then A is symmetric.

43. (1 pt) UI/Fall14/lin_span2.pg

Which of the following sets of vectors span R^3 ?

• A.	$\begin{bmatrix} -7\\-4\\8 \end{bmatrix}, \begin{bmatrix} -6\\9\\2 \end{bmatrix}, \begin{bmatrix} 5\\0\\1 \end{bmatrix}$
• B.	$\begin{bmatrix} 1 \\ -5 \end{bmatrix}, \begin{bmatrix} -7 \\ 1 \end{bmatrix}$
• C.	$\begin{bmatrix} 0\\0 \end{bmatrix}, \begin{bmatrix} -2\\8 \end{bmatrix}$
• D.	$\left[\begin{array}{c}5\\7\end{array}\right], \left[\begin{array}{c}2\\-8\end{array}\right], \left[\begin{array}{c}-6\\-4\end{array}\right]$
• E.	$\begin{bmatrix} -7\\8\\0 \end{bmatrix}, \begin{bmatrix} -5\\3\\0 \end{bmatrix}, \begin{bmatrix} -9\\4\\0 \end{bmatrix}$
• F.	$\begin{bmatrix} -2\\6\\5 \end{bmatrix}, \begin{bmatrix} 7\\2\\-8 \end{bmatrix}, \begin{bmatrix} 5\\8\\-3 \end{bmatrix}$

Which of the following sets of vectors are linearly independent?

Let $A = \begin{bmatrix} 1 \\ 1 \\ -4 \end{bmatrix}$, $B = \begin{bmatrix} -1 \\ -21 \end{bmatrix}$, and $C = \begin{bmatrix} 1 \\ 0 \\ 5 \end{bmatrix}$.

Which of the following best describes the span of the above 3 vectors?

- A. 0-dimensional point in R^3
- B. 1-dimensional line in R^3
- C. 2-dimensional plane in R^3
- D. *R*³

Determine whether or not the three vectors listed above are linearly independent or linearly dependent.

- A. linearly dependent
- B. linearly independent

If they are linearly dependent, determine a non-trivial linear relation. Otherwise, if the vectors are linearly independent, enter 0's for the coefficients, since that relationship **always** holds. A+ B+ C=0.

45. (1 pt) UI/orthog.pg

All vectors and subspaces are in \mathbb{R}^n .

Check the true statements below:

- A. If **v** and **w** are both eigenvectors of A and if A is symmetric, then $\mathbf{v} \cdot \mathbf{w} = 0$.
- B. If x is not in a subspace W, then x − proj_W(x) is not zero.
- C. If $W = Span\{x_1, x_2, x_3\}$ and if $\{v_1, v_2, v_3\}$ is an orthonormal set in W, then $\{v_1, v_2, v_3\}$ is an orthonormal basis for W.
- D. If $A\mathbf{v} = r\mathbf{v}$ and $A\mathbf{w} = s\mathbf{w}$ and $r \neq s$, then $\mathbf{v} \cdot \mathbf{w} = 0$.

- E. If $\{v_1, v_2, v_3\}$ is an orthonormal set, then the set $\{v_1, v_2, v_3\}$ is linearly independent.
- F. In a QR factorization, say A = QR (when A has linearly independent columns), the columns of Q form an orthonormal basis for the column space of A.
- G. If A is symmetric, $A\mathbf{v} = r\mathbf{v}$, $A\mathbf{w} = s\mathbf{w}$ and $r \neq s$, then $\mathbf{v} \cdot \mathbf{w} = 0$.

46. (1 pt) local/Library/Rochester/setLinearAlgebra3Matrices-/ur_la_3_14.pg

Find the ranks of the following matrices.

$$rank \begin{bmatrix} 4 & -5 \\ -8 & 10 \end{bmatrix} = --$$

$$rank \begin{bmatrix} 5 & 1 & -5 \\ 0 & 4 & 0 \\ -4 & 0 & 4 \end{bmatrix} = --$$

$$rank \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 8 & 0 \end{bmatrix} = --$$

47. (1 pt) local/Library/TCNJ/TCNJ_BasesLinearlyIndependentSet-/3.pg

Check the true statements below:

- A. The column space of a matrix *A* is the set of solutions of *Ax* = *b*.
- B. A basis is a spanning set that is as large as possible.
- C. If *B* is an echelon form of a matrix *A*, then the pivot columns of *B* form a basis for *ColA*.
- D. The columns of an invertible *n* × *n* matrix form a basis for ℝⁿ.
- E. If $H = Span\{b_1, ..., b_p\}$, then $\{b_1, ..., b_p\}$ is a basis for H.

48. (1 pt) local/Library/TCNJ/TCNJ_LinearSystems/problem6.pg Give a geometric description of the following systems of equations

Hint: (*Instructor hint preview: show the student hint after 1 attempts. The current number of attempts is 0.*)

Reduce the augmented matrix and solve for it. If it has unique solutions, three planes intersect at a point; no solutions indicates no common intersection; one free variable shows intersection on a line; two free variables means identical planes.

49. (1 pt) local/Library/UI/2.3.49.pg

Let \mathbf{u}_4 be a linear combination of $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$. Select the best statement.

- A. {**u**₁, **u**₂, **u**₃} is never a linearly dependent set of vectors.
- B. {**u**₁, **u**₂, **u**₃} is a linearly dependent set of vectors unless one of {**u**₁, **u**₂, **u**₃} is the zero vector.
- C. {**u**₁, **u**₂, **u**₃, **u**₄} is always a linearly independent set of vectors.
- D. {**u**₁, **u**₂, **u**₃} is a linearly dependent set of vectors.
- E. {**u**₁, **u**₂, **u**₃, **u**₄} could be a linearly dependent or linearly independent set of vectors depending on the vectors chosen.
- F. {**u**₁, **u**₂, **u**₃, **u**₄} is never a linearly independent set of vectors.
- G. none of the above

50. (1 pt) local/Library/UI/4.1.23.pg

Find the null space for $A = \begin{bmatrix} 1 & 0 & 9 \\ 0 & 1 & -8 \end{bmatrix}$. What is null(*A*)?

• A. \mathbb{R}^2 • B. span $\left\{ \begin{bmatrix} +8\\ -9\\ 1 \end{bmatrix} \right\}$

• C.
$$\mathbb{R}^3$$

• D. span $\left\{ \begin{bmatrix} -9\\ +8 \end{bmatrix} \right\}$

- E. span $\left\{ \begin{bmatrix} 1\\0\\-9 \end{bmatrix}, \begin{bmatrix} 0\\1\\+8 \end{bmatrix} \right\}$ • F. span $\left\{ \begin{bmatrix} +8\\-9 \end{bmatrix} \right\}$
- G. span $\left\{ \begin{bmatrix} -9\\ +8\\ 1 \end{bmatrix} \right\}$
- H. none of the above

51. (1 pt) local/Library/UI/4.1.77.pg The null space for the matrix $\begin{bmatrix} 1 & 7 & -2 & 14 & 0 \\ 3 & 0 & 1 & -2 & 3 \\ 6 & 1 & -1 & 0 & 4 \end{bmatrix}$					
	[1]	7	-2	14	0]
The null space for the matrix	3	0	1	-2	3
	6	1	-1	0	4

52. (1 pt) local/Library/UI/4.3.3.pg

Find bases for the column space and the null space of matrix A. You should verify that the Rank-Nullity Theorem holds. An equivalent echelon form of matrix A is given to make your work easier.

54. (1 pt) local/Library/UI/Fall14/HW7_4.pg

Determine if the subset of \mathbb{R}^2 consisting of vectors of the form $\begin{bmatrix} a \\ b \end{bmatrix}$, where *a* and *b* are integers, is a subspace. Select true or false for each statement. The set contains the zero vector

• A. True

is ____

• B. False

This set is closed under vector addition

- A. True
- B. False

This set is closed under scalar multiplications

- A. True
- B. False

This set is a subspace

- A. True
- B. False

55. (1 pt) local/Library/UI/Fall14/HW7_5.pg

Determine if the subset of \mathbb{R}^3 consisting of vectors of the $\begin{bmatrix} a \end{bmatrix}$

form $\begin{vmatrix} b \\ c \end{vmatrix}$, where $a \ge 0, b \ge 0$, and $c \ge 0$ is a subspace.

Select true or false for each statement.

The set contains the zero vector

- A. True
- B. False

This set is closed under vector addition

- A. True
- B. False

This set is closed under scalar multiplications

- A. True
- B. False

This set is a subspace

- A. True
- B. False

56. (1 pt) local/Library/UI/Fall14/HW7_6.pg

If *A* is an $n \times n$ matrix and $\mathbf{b} \neq 0$ in \mathbb{R}^n , then consider the set of solutions to $A\mathbf{x} = \mathbf{b}$.

Select true or false for each statement.

The set contains the zero vector

- A. True
- B. False

This set is closed under vector addition

- A. True
- B. False

This set is closed under scalar multiplications

- A. True
- B. False

This set is a subspace

- A. True
- B. False

57. (1 pt) local/Library/UI/Fall14/HW7_11.pg Find all values of x for which rank(A) = 2.

ina un	vuiue	5 01 1	101 101	men re	am(11)	
	2	2	0	7	7	
A =	4	8	х	21		
	-6	-18	-12	-42		
x =	-				-	
٠	A4					
•	B3					
٠	C2					
٠	D1					
٠	E. 0					
٠	F. 1					
٠	G. 2					
•	H. 3					

- I. 4
- J. none of the above

58. (1 pt) local/Library/UI/Fall14/HW7_12.pg

Suppose that A is a 6×7 matrix which has a null space of dimension 6. The rank of A=

- A. -4
- B.-3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

59. (1 pt) local/Library/UI/Fall14/HW7_25.pg

Indicate whether the following statement is true or false? If $S = \text{span}u_1, u_2, u_3$, then dim(S) = 3.

- A. True
- B. False

60. (1 pt) local/Library/UI/Fall14/HW7_27.pg

Determine the rank and nullity of the matrix.

- 2 -1 0 1 5 2 -4 1 -4 -1 -1 6 -8 -5 -2 9 The rank of the matrix is
 - A. -4
 - B. -3
 - C. -2
 - D. -1
 - E. 0
 - F. 1
 - G. 2 • H. 3
 - п. з • І. 4
 - J. none of the above

The nullity of the matrix is

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
 - I.4
- J. none of the above

9

61. (1 pt) local/Library/UI/Fall14/HW8_2.pg

Evaluate the following 3×3 determinant. Use the properties of determinants to your advantage.

$$\begin{vmatrix} -7 & 0 & -4 \\ -7 & 0 & 3 \\ -8 & 0 & 2 \end{vmatrix}$$

- A. -4
- B. -3
- C. -2
- D. -1
- E.0 • F.1
- G. 2
- H. 3
- I. 4

• J. none of the above

Does the matrix have an inverse?

- A. No
- B. Yes

- A. -12
- B. -5
- C. -4
- D. -2
- E. -1
- F. 0
- G. 1
- H. 3
- I. 5
- J. 7

• K. None of those above

(b) Does the matrix have an inverse?

- A. No
- B. Yes

63. (1 pt) local/Library/UI/Fall14/HW8_4.pg

If *A* and *B* are 4×4 matrices, det (A) = -4, det (B) = 9, then det (AB) =

- A. -15
- B. -36
- C. -11
- D. -8
- E. -5
- F. 0
- G. 3
- H. 6
- I. 8
- J. 12
- K. None of those above

 $\det\left(-3A\right) =$

- A. -40
- B. -324
- C. -28
- D. -21
- E. -10
- F. -1
- G. 10
- H. 21
- I. 28
- J. 36
- K. 40
- L. None of those above

 $\det(A^T) =$

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0 • F. 1
- G. 2
- H. 3
- I. 4
- J. None of those above

 $\det(B^{-1}) =$

• A. -0.5

- B. -0.4
- C. -0.111111111111111
- D.0
- E. 0.1111111111111111
- F. 0.4
- G. 0.5
- H. 1
- I. None of those above

 $\det(B^2) =$

- A. -81
- B. -36
- C. -12
- D.0
- E. 12
- F. 36
- G. 81
- H. 1024
- I. None of those above

64. (1 pt) local/Library/UI/Fall14/HW8_5.pg Find the determinant of the matrix $\begin{bmatrix} -1 & 0 & 0 & 0 \end{bmatrix}$

	-1	0	0	0	
٨	-8	-5	0	0	
A =	-1	1	-4	0	•
	6	-2	8	6	
det (A	$\overline{\mathbf{A}}) =$			_	

- A. -400
- B. -360
- C. -288
- D.0
- E. 120
- F. -120
- G. 240
- H. 360
- I. 400
- J. None of those above

65. (1 pt) local/Library/UI/Fall14/HW8_7.pg

Suppose that a 4×4 matrix *A* with rows v_1 , v_2 , v_3 , and v_4 has determinant det*A* = 6. Find the following determinants:

 $B = \begin{bmatrix} 2v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix} \det(B) =$ • A. -18 • B. -15 • C. -12 • F. 9 • G. 12 • H. 15 • I. 18 • J. None of those above $C = \begin{bmatrix} v_4 \\ v_1 \\ v_2 \\ v_3 \end{bmatrix} \det(C) =$

• D. -9

• E. 0

- A. -18
- B.-6
- C. -9
- D. -3
- E. 0
- F. 3 • G. 9
- 0.9
- H. 12 • I. 18
- J. None of those above

$$D = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 + 3v_2 \end{bmatrix}$$
$$\det(D) =$$

- A. -18
- B.6
- C. -9
- D. -3
- E. 0
- F. 3
- G. 9
- H. 12
- I. 18
- J. None of those above

66. (1 pt) local/Library/UI/Fall14/HW8_8.pg

Use determinants to determine whether each of the following sets of vectors is linearly dependent or independent.

$$\left[\begin{array}{c} -1\\ -4 \end{array}\right], \left[\begin{array}{c} 7\\ 7 \end{array}\right],$$

- A. Linearly Dependent
- B. Linearly Independent

67. (1 pt) local/Library/UI/Fall14/HW8_10.pg

$$A = \begin{bmatrix} -9 & 2 & 0 & -4 \\ 1 & -2 & 0 & 0 \\ 0 & -7 & 0 & 0 \\ -5 & 9 & 1 & -6 \end{bmatrix}$$

The determinant of the matrix is

- A. -1890
- B. -1024
- C. -630
- D. -28
- E. -210
- F. 0
- G. 324
- H. 630
- I. 1024
- J. None of those above

Hint: Find a good row or column and expand by minors.

68. (1 pt) local/Library/UI/Fall14/HW8_11.pg	g
Find the determinant of the matrix	

 $M = \begin{bmatrix} 3 & 0 & 0 & 2 & 0 \\ 2 & 0 & -3 & 0 & 0 \\ 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 & -1 \\ 0 & 2 & -2 & 0 & 0 \end{bmatrix}.$ $\det(M) =$

• A. -48

- B. -35
- C. -20
- D. -10 • E. -5
- E. -5
- G. 18
- H. 20
- I. 81
- J. None of those above

69. (1 pt) local/Library/UI/Fall14/HW8_12.pg

	1	2	3	4	5	6	7	8	9
	1	2	3	4	5	6	7	8	9
	1	2	3	4	5	6	7	8	9
	1	2	3	4	5	6	7	8	9
A =	1	2	3	4	5	6	7	8	9
	1	2	3	4	5	6	7	8	9
	1	2	3	4	5	6	7	8	9
	1	2	3	4	5	6	7	8	9
	1	2	3	4	5	6	7	8	9

And now for the grand finale: The determinant of the matrix is

- A. -362880
- B.-5
- C.0
- D. 5
- E. 20
- F. 30
- G. 40
- H. 362880
- I. None of the above

Hint: Remember that a square linear system has a unique solution if the determinant of the coefficient matrix is non-zero.

A system of equations can have exactly 2 solution.

- A. True
- B. False

A system of linear equations can have exactly 2 solution.

- A. True
- B. False

A system of linear equations has no solution if and only if the last column of its augmented matrix corresponds to a pivot column.

- A. True
- B. False

A system of linear equations has an infinite number of solutions if and only if its associated augmented matrix has a column corresponding to a free variable.

- A. True
- B. False

If a system of linear equations has an infinite number of solutions, then its associated augmented matrix has a column corresponding to a free variable.

- A. True
- B. False

If a linear system has four equations and seven variables, then it must have infinitely many solutions.

- A. True
- B. False

Every linear system with free variables has infinitely many solutions.

- A. True
- B. False

Any linear system with more variables than equations cannot have a unique solution.

- A. True
- B. False

If a linear system has the same number of equations and variables, then it must have a unique solution.

- A. True
- B. False

A vector *b* is a linear combination of the columns of a matrix *A* if and only if the equation Ax = b has at least one solution.

- A. True
- B. False

If the columns of an $m \times n$ matrix, A span \mathbb{R}^m , then the equation, Ax = b is consistent for each b in \mathbb{R}^m .

- A. True
- B. False

If A is an $m \times n$ matrix and if the equation Ax = b is inconsistent for some b in \mathbb{R}^m , then A cannot have a pivot position in every row.

- A. True
- B. False

Any linear combination of vectors can always be written in the form Ax for a suitable matrix A and vector x.

- A. True
- B. False

If the equation Ax = b is inconsistent, then b is not in the set spanned by the columns of A.

- A. True
- B. False

If *A* is an $m \times n$ matrix whose columns do not span \mathbb{R}^m , then the equation Ax = b is inconsistent for some *b* in \mathbb{R}^m .

- A. True
- B. False

Every linear system with free variables has infinitely many solutions.

- A. True
- B. False

86. (1 pt) local/Library/UI/Fall14/quiz2_2.pg

Find the area of the triangle with vertices (1,3), (8,5), and (4,9).Area =

- - A. 2
 - B. 5
 - C.6
 - D.8
 - E. 9
 - F. 12 • G. 18
 - H. 20
 - I. 25
 - J. None of those above

Hint: The area of a triangle is half the area of a parallelogram. Find the vectors that determine the parallelogram of interest. If you have difficulty, visualizing the problem may be helpful: plot the 3 points.

87. (1 pt) local/Library/UI/Fall14/quiz2_6.pg Determine if *v* is an eigenvector of the matrix *A*.

4.
$$A = \begin{bmatrix} 5 & 1 & 8 \\ 6 & 0 & 8 \\ -3 & -1 & -6 \end{bmatrix}$$
, $v = \begin{bmatrix} 4 \\ 5 \\ 1 \end{bmatrix}$
• A. Yes
• B. No

88. (1 pt) local/Library/UI/Fall14/quiz2_7.pg

Given that $v_1 = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$ and $v_2 = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$ are eigenvectors of the matrix $A = \begin{bmatrix} 24 & 36 \\ -12 & -18 \end{bmatrix}$, determine the corresponding eigenvalues. a. λ

$$\lambda_1 =$$

- A. -6
- B. -5 • C. -4
- D. -3
- E. -2
- F. -1
- G. 0
- H. 1
- I. 2
- J. None of those above

b. $\lambda_2 =$

- A. -5
- B. -4
- C. -3
- D. -2
- E. -1
- F. 0 • G. 6
- H. 1
- I. 2
- J. 3
- K. None of those above

89. (1 pt) local/Library/UI/Fall14/volume1.pg

Find the volume of the parallelepiped determined by vectors

-3		0		4
0	,	-2	, and	-3
0		0		-3

- A. 18
- B. -5
- C. -4
- D. -2
- E. -1

- F. 0
- G. 1
- H. 3
- I. 5
- J. 7
- K. None of those above

Suppose a 3 x 5 augmented matrix contains a pivot in every row. Then the corresponding system of equations has

- A. No solution
- B. Unique solution
- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions
- G. no solution, a unique solution, or an infinite number of solutions, depending on the system of equations
- H. none of the above

Given the following augmented matrix,

$$A = \begin{bmatrix} 8 & 5 & -2 \\ 7 & 4 & & \\ 0 & -7 & 3 \\ 9 & 6 & & \\ 0 & 0 & 0 \\ 0 & 1 & & \end{bmatrix},$$

the corresponding system of equations has

- A. No solution
- B. Unique solution
- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions
- G. no solution, a unique solution or an infinite number of solutions, depending on the system of equations
- H. none of the above

Given the following augmented matrix,

	□ -9	3	0]
	1	-6	
٨	0	7	5
A =	-9	-2	
	0	0	0
	7	-4	
	-		_

the corresponding system of equations has

- A. No solution
- B. Unique solution

- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions
- G. no solution, a unique solution or an infinite number of solutions, depending on the system of equations
- H. none of the above

Suppose an augmented matrix contains a pivot in the last column. Then the corresponding system of equations has

- A. No solution
- B. Unique solution
- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions
- G. no solution, a unique solution or an infinite number of solutions, depending on the system of equations
- H. none of the above

Suppose a coefficient matrix A contains a pivot in the last column. Then $A\vec{x} = \vec{b}$ has

- A. No solution
- B. Unique solution
- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions
- G. no solution, a unique solution or an infinite number of solutions, depending on the system of equations
- H. none of the above

Suppose a coefficient matrix A contains a pivot in every row. Then $A\vec{x} = \vec{b}$ has

- A. No solution
- B. Unique solution
- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions
- G. no solution, a unique solution or an infinite number of solutions, depending on the system of equations
- H. none of the above

Suppose a coefficient matrix A contains a pivot in every column. Then $A\vec{x} = \vec{b}$ has

- A. No solution
- B. Unique solution
- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions
- G. no solution, a unique solution or an infinite number of solutions, depending on the system of equations
- H. none of the above

Suppose $A\vec{x} = \vec{0}$ has an infinite number of solutions, then given a vector \vec{b} of the appropriate dimension, $A\vec{x} = \vec{b}$ has

- A. No solution
- B. Unique solution
- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions
- G. no solution, a unique solution or an infinite number of solutions, depending on the system of equations
- H. none of the above

Suppose $A\vec{x} = \vec{b}$ has an infinite number of solutions, then $A\vec{x} = \vec{0}$ has

- A. No solution
- B. Unique solution
- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions
- G. no solution, a unique solution or an infinite number of solutions, depending on the system of equations
- H. none of the above

Suppose $A\vec{x} = \vec{0}$ has a unique solution, then given a vector \vec{b} of the appropriate dimension, $A\vec{x} = \vec{b}$ has

- A. No solution
- B. Unique solution
- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions
- G. no solution, a unique solution or an infinite number of solutions, depending on the system of equations

• H. none of the above

Suppose $A\vec{x} = \vec{b}$ has a unique solution, then $A\vec{x} = \vec{0}$ has

- A. No solution
- B. Unique solution
- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions
- G. no solution, a unique solution or an infinite number of solutions, depending on the system of equations
- H. none of the above

Suppose $A\vec{x} = \vec{b}$ has no solution, then $A\vec{x} = \vec{0}$ has

- A. No solution
- B. Unique solution
- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions
- G. no solution, a unique solution or an infinite number of solutions, depending on the system of equations
- H. none of the above

Suppose A is a square matrix and $A\vec{x} = \vec{0}$ has a unique solution, then given a vector \vec{b} of the appropriate dimension, $A\vec{x} = \vec{b}$ has

- A. No solution
- B. Unique solution
- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions
- G. no solution, a unique solution or an infinite number of solutions, depending on the system of equations
- H. none of the above

Suppose A is a square matrix and $A\vec{x} = \vec{0}$ has an infinite number of solutions, then given a vector \vec{b} of the appropriate dimension, $A\vec{x} = \vec{b}$ has

- A. No solution
- B. Unique solution
- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions

- G. no solution, a unique solution or an infinite number of solutions, depending on the system of equations
- H. none of the above

104. (1 pt) local/Library/UI/LinearSystems/spanHW4.pg

Let
$$A = \begin{bmatrix} -1 & 2 & 0 \\ 0 & -3 & 3 \\ -5 & 7 & 0 \end{bmatrix}$$
, and $b = \begin{bmatrix} 6 \\ -5 \\ -1 \end{bmatrix}$

Denote the columns of A by a_1 , a_2 , a_3 , and let W =*span* $\{a_1, a_2, a_3\}$.

? 1. Determine if b is in W

? 2. Determine if b is in
$$\{a_1, a_2, a_3\}$$

How many vectors are in $\{a_1, a_2, a_3\}$? (For infinitely many, enter -1)_

How many vectors are in W? (For infinitely many, enter -1)

105. (1 pt) local/Library/UI/MatrixAlgebra/Euclidean/2.3.43.pg

Let A be a matrix with linearly independent columns. Select the best statement.

- A. The equation $A\mathbf{x} = \mathbf{0}$ always has nontrivial solutions.
- B. The equation $A\mathbf{x} = \mathbf{0}$ has nontrivial solutions precisely when it has more columns than rows.
- C. The equation $A\mathbf{x} = \mathbf{0}$ has nontrivial solutions precisely when it is a square matrix.
- D. There is insufficient information to determine if such an equation has nontrivial solutions.
- E. The equation $A\mathbf{x} = \mathbf{0}$ has nontrivial solutions precisely when it has more rows than columns.
- F. The equation $A\mathbf{x} = \mathbf{0}$ never has nontrivial solutions.
- G. none of the above

```
106. (1 pt) local/Library/UI/MatrixAlgebra/Euclidean/2.3.44.pg
```

Let *A* be a matrix with linearly independent columns. Select the best statement.

- A. There is insufficient information to determine if $A\mathbf{x} = \mathbf{b}$ has a solution for all **b**.
- B. The equation $A\mathbf{x} = \mathbf{b}$ has a solution for all **b** precisely when it has more columns than rows.
- C. The equation $A\mathbf{x} = \mathbf{b}$ has a solution for all **b** precisely when it is a square matrix.
- D. The equation $A\mathbf{x} = \mathbf{b}$ never has a solution for all \mathbf{b} .
- E. The equation $A\mathbf{x} = \mathbf{b}$ always has a solution for all \mathbf{b} .
- F. The equation $A\mathbf{x} = \mathbf{b}$ has a solution for all **b** precisely when it has more rows than columns.
- G. none of the above

107. (1 pt) local/Library/UI/eigenTF.pg A is $n \times n$ an matrices.

Check the true statements below:

- A. The vector **0** is an eigenvector of A if and only if Ax = 0 has a nonzero solution
- B. 0 is an eigenvalue of A if and only if Ax = 0 has an infinite number of solutions
- C. The vector **0** is an eigenvector of A if and only if the columns of A are linearly dependent.
- D. The eigenspace corresponding to a particular eigenvalue of A contains an infinite number of vectors.
- E. A will have at most *n* eigenvectors.
- F. 0 is an eigenvalue of A if and only if the columns of A are linearly dependent.
- G. 0 is an eigenvalue of A if and only if det(A) = 0
- H. 0 is an eigenvalue of A if and only if Ax = 0 has a nonzero solution
- I. The vector **0** is an eigenvector of A if and only if det(A) = 0
- J. A will have at most *n* eigenvalues.
- K. The vector **0** can never be an eigenvector of A
- L. 0 can never be an eigenvalue of A.
- M. There are an infinite number of eigenvectors that correspond to a particular eigenvalue of A.

108. (1 pt) local/Library/UI/problem7.pg

A and B are $n \times n$ matrices.

Adding a multiple of one row to another does not affect the determinant of a matrix.

- A. True
- B. False

If the columns of *A* are linearly dependent, then det A = 0.

- A. True
- B. False

det(A+B) = detA + detB.

- A. True
- B. False

Suppose *A* is a 11×9 matrix. If rank of *A* = 7, then nullity of *A* =

• A. -4

• B. -3

• C. -2

- D. -1
- E.0 • F.1
- G. 2
- U. 2 • H. 3
- I. 4
- J. none of the above

The vector \vec{b} is NOT in *ColA* if and only if $A\vec{v} = \vec{b}$ does NOT have a solution

• A. True

• B. False

The vector \vec{b} is in *ColA* if and only if $A\vec{v} = \vec{b}$ has a solution

- A. True
- B. False

Suppose $A = PDP^{-1}$ where *D* is a diagonal matrix. If $P = [\vec{p_1} \ \vec{p_2} \ \vec{p_3}]$, then $2\vec{p_1}$ is an eigenvector of *A*

- A. True
- B. False

Suppose $A = PDP^{-1}$ where *D* is a diagonal matrix. If $P = [\vec{p_1} \ \vec{p_2} \ \vec{p_3}]$, then $\vec{p_1} + \vec{p_2}$ is an eigenvector of *A*

- A. True
- B. False

Suppose $A = PDP^{-1}$ where *D* is a diagonal matrix. Suppose also the d_{ii} are the diagonal entries of D. If $P = [\vec{p_1} \ \vec{p_2} \ \vec{p_3}]$ and $d_{11} = d_{22}$, then $\vec{p_1} + \vec{p_2}$ is an eigenvector of *A*

- A. True
- B. False

Suppose $A = PDP^{-1}$ where *D* is a diagonal matrix. Suppose also the d_{ii} are the diagonal entries of D. If $P = [\vec{p_1} \ \vec{p_2} \ \vec{p_3}]$ and $d_{22} = d_{33}$, then $\vec{p_1} + \vec{p_2}$ is an eigenvector of *A*

- A. True
- B. False

The vector \vec{v} is in *NulA* if and only if $A\vec{v} = \vec{0}$

- A. True
- B. False

If the equation $A\vec{x} = \vec{b_1}$ has at least one solution and if the equation $A\vec{x} = \vec{b_2}$ has at least one solution, then the equation $A\vec{x} = -6\vec{b_1} - 3\vec{b_2}$ also has at least one solution.

- A. True
- B. False

Hint: (*Instructor hint preview: show the student hint after 0 attempts. The current number of attempts is 0.*) Is *colA* a subspace? Is *colA* closed under linear combinations?

If $\vec{v_1}$ and $\vec{v_2}$ are eigenvectors of *A* corresponding to eigenvalue λ_0 , then $2\vec{v_1} - 5\vec{v_2}$ is also an eigenvector of *A* corresponding to eigenvalue λ_0 when $2\vec{v_1} - 5\vec{v_2}$ is not $\vec{0}$.

- A. True
- B. False

Hint: (*Instructor hint preview: show the student hint after 0 attempts. The current number of attempts is 0.*)

Is an eigenspace a subspace? Is an eigenspace closed under linear combinations?

Also, is $2\vec{v_1} - 5\vec{v_2}$ nonzero?

If $\vec{x_1}$ and $\vec{x_2}$ are solutions to $A\vec{x} = \vec{0}$, then $-8\vec{x_1} - 9\vec{x_2}$ is also a solution to $A\vec{x} = \vec{0}$.

- A. True
- B. False

Hint: (*Instructor hint preview: show the student hint after 0 attempts. The current number of attempts is 0.*) Is *NulA* a subspace? Is *NulA* closed under linear combinations?

If $\vec{x_1}$ and $\vec{x_2}$ are solutions to $A\vec{x} = \vec{b}$, then $6\vec{x_1} - 7\vec{x_2}$ is also a solution to $A\vec{x} = \vec{b}$.

- A. True
- B. False

Hint: (*Instructor hint preview: show the student hint after 0 attempts. The current number of attempts is 0.*)

Is the solution set to $A\vec{x} = \vec{b}$ a subspace even when \vec{b} is not $\vec{0}$? Is the solution set to $A\vec{x} = \vec{b}$ closed under linear combinations even when \vec{b} is not $\vec{0}$?

Find the area of the parallelogram determined by the vectors	-
[2 66666666666666666666666666666666666	,
$\begin{vmatrix} 2.0000000007 \\ 3 \end{vmatrix}$ and $\begin{vmatrix} 3 \\ 3 \end{vmatrix}$.	
• A4	
• B3	
• C2	
• D1	
• E. 0	
• E 1	
• G. 2	
• H. 3	
• I. 4	
• J. 5	
	-
Use Cramer's rule to solve the following system of equations	•
38x + 9v = 32	
4x + 1y = 4	
x + y = 1	
• A4	
• B3	
• C2	
• D1	
• E. 0	
• E 1	
• G. 2	
• H. 3	
• I.4	
• J. none of the above	
	-
Which of the following is an eigenvalue of $\begin{vmatrix} -4 & 0 \\ 1 & -6 \end{vmatrix}$.	
• A4	
• B3	
• C -2	
• D -1	
• F 0	
• F 1	
• G 2	
• H 3	

• I. 4

• J. none of the above

Let
$$A = \begin{bmatrix} 2 & -4 & -5 \\ 0 & -2 & -1 \\ 0 & 0 & 2 \end{bmatrix}$$
. Is $A =$ diagonalizable?

- A. yes
- B. no

• C. none of the above

Let $A = \begin{bmatrix} 6 & 0 & 12 \\ 0 & 6 & 3 \\ 0 & 0 & 6 \end{bmatrix}$. Is A = diagonalizable? • A. yes • B. no • C. none of the above Let $A = \begin{bmatrix} 2 & 13 \\ 9 & -9 \end{bmatrix}$. Is A = diagonalizable? • A. yes • B. no • C. none of the above Hint: (Instructor hint preview: show the student hint after 0

attempts. The current number of attempts is 0.) You do NOT need to do much work for this problem. You just need to know if the matrix A is diagonalizable. Since A is a 2 x 2 matrix, you need 2 linearly independent eigenvectors of A to form P. Does A have 2 linearly independent eigenvectors? Note you don't need to know what these eigenvectors are. You don't even need to know the eigenvalues.

Let
$$A = \begin{bmatrix} -0.904761904761905 & 6.53571428571429 & -4.85714 \\ 1.22751322751323 & -0.761904761904762 & 1.39682 \\ -2.222222222222222 & 5 & -1.666666 \\ \text{and let } P = \begin{bmatrix} 9 & -9 & -6 \\ 4 & -8 & 8 \\ 0 & -6 & -5 \end{bmatrix}.$$

Suppose $A = PDP^{-1}$. Then if d_{ii} are the diagonal entries of $D, d_{11} =$,

- A. -4
 B. -3
 C. -2
 D. -1
 E. 0
 F. 1
 G. 2
 H. 3
 I. 4
- J. 5

Hint: (Instructor hint preview: show the student hint after 0 attempts. The current number of attempts is 0.) Use definition of eigenvalue since you know an eigenvector corresponding to eigenvalue d_{11} .

Suppose <i>A</i> is a 7 \times 3 matrix. Then <i>nul A</i> is a subspace of R^k	• I. 4
where $k =$	• J. 5
• A4	$\begin{bmatrix} 3 \\ 4 \end{bmatrix} \begin{bmatrix} -3 \\ 4 \end{bmatrix}$ Thus in the fair
• B3	Suppose A 4 = -4 . Then an eigenvalue of A is
• C2	
• D1	
• E. 0	• A4
• F. 1	• B3
• G. 2	• C2
• H. 3	• D1
• I. 4	• E. 0
• J. none of the above	• E.1
	• G. 2
Suppose A is a 2 \times 4 matrix. Then <i>col</i> A is a subspace of R^{k}	• H. 3
where $k =$	• I. 4
	• J. none of the above
• A4	
• B3	Determine the length of -1
• C2	3.87298334620742]
• D1	
• E. 0	• A4
• F. 1	• B 3
• G. 2	• C2
• H. 3	• D1
• I. 4	• E. U
• J. none of the above	
[5] [1]	• 0.2
Calculate the dot product: 5 . 3	• 11.5
$\begin{bmatrix} 3 & 3 \\ 2 & -8 \end{bmatrix}$	• 1.4
	- 3 .5
	If the characteristic polynomial of $A = (\lambda + 1)^2 (\lambda - 6)(\lambda - 6)^2 (\lambda - 6)$
• A4	$8)^9$, then the algebraic multiplicity of $\lambda = 6$ is
• B3	
• C2	
• D1	• A4
• E. 0	• B3
• F. I	• C2
• G. 2	• D1
• H. 3	• E. 0
• 1.4	• F. 1
• J. none of the above	• G. 2
	• H. 3
Calculate the determinant of $\begin{vmatrix} -4 & 9 \end{vmatrix}$.	• I. 4
L J	• J. none of the above
• 1	If the characteristic polynomial of $A = (\lambda - 9)^2 (\lambda + 3)(\lambda +$
• B -3	4) ² , then the geometric multiplicity of $\lambda = -3$ is
• C -2	, , , , , , , , , , , , , , , , , , ,
• 02 • D -1	
• D1	
• E.U • F 1	• A4 • B. 3
• 6.2	$\begin{array}{c} \bullet \mathbf{D}, \bullet \mathbf{J} \\ \bullet \mathbf{C} \mathbf{J} \end{array}$
▼ 0. 2	

• D. -1 • E. 0 • F. 1 • G. 2 • H. 3 • I. 4 • J. none of the above If the characteristic polynomial of $A = (\lambda - 5)^7 (\lambda + 3)^2 (\lambda - 3)^7 (\lambda + 3)^2 (\lambda - 3)^7 (\lambda + 3)^7 (\lambda - 3)^7 (\lambda + 3)^7 (\lambda - 3)^7 ($

4)⁷, then the algebraic multiplicity of $\lambda = -3$ is

- A. 0
- B. 1
- C. 2
- D. 3
- E. 0 or 1
- F. 0 or 2
- G. 1 or 2
- H. 0, 1, or 2
- I. 0, 1, 2, or 3
- J. none of the above

If the characteristic polynomial of $A = (\lambda + 8)^3 (\lambda - 8)^2 (\lambda + 2)^5$, then the geometric multiplicity of $\lambda = 8$ is

A. 0	ŀ	•
A. 0	ŀ	•

- B. 1
- C. 2 • D. 3
- E. 0 or 1
- F. 0 or 2
- G. 1 or 2
- H. 0, 1, or 2
- I. 0, 1, 2, or 3
- J. none of the above

Suppose the orthogonal projection of $\begin{bmatrix} -141\\ 7\\ -8 \end{bmatrix}$ onto

$$\begin{bmatrix} 1\\ -1\\ -5 \end{bmatrix}$$
 is (z_1, z_2, z_3) . Then $z_1 =$

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

• A. -4 • B. -3 C. -2 D. -1 E. 0 • F. 1 • G. 2 • H. 3 • I. 4 • J. none of the above u_1 Suppose is a unit vector in the direction of u_2 u3 4 -2. Then $u_1 =$ 4.94413232473044 • A. -0.8 • B. -0.6 • C. -0.4 • D. -0.2 • E. 0 • F. 0.2 • G. 0.4 • H. 0.6 • I. 0.8 • J. 1

140. (1 pt) local/Library/UI/volumn2.pg A and B are $n \times n$ matrices.

Check the true statements below:

- A. $detA^{T} = (-1)detA$.
- B. If *A* is 3*x*3, with columns *a*₁, *a*₂, *a*₃, then *detA* equals the volume of the parallelpiped determined by the vectors *a*₁, *a*₂, *a*₃.
- C. If *A* is 3x3, with columns *a*₁, *a*₂, *a*₃, then the absolute value of *detA* equals the volume of the parallelpiped determined by the vectors *a*₁, *a*₂, *a*₃.