1. (1 pt) Library/ASU-topics/set119MatrixAlgebra/p13.pg Consider the following two systems.
(a)

$$
\left\{\begin{array}{ccc}
x+4 y & = & 3 \\
-3 x-9 y & = & -3
\end{array}\right.
$$

(b)

$$
\left\{\begin{array}{ccc}
x+4 y & = & -2 \\
-3 x-9 y & = & 4
\end{array}\right.
$$

(i) Find the inverse of the (common) coefficient matrix of the two systems.

$$
A^{-1}=\left[\begin{array}{ll}
\square & -
\end{array}\right]
$$

(ii) Find the solutions to the two systems by using the inverse, i.e. by evaluating $A^{-1} B$ where B represents the right hand side (i.e. $B=\left[\begin{array}{c}3 \\ -3\end{array}\right]$ for system (a) and $B=\left[\begin{array}{c}-2 \\ 4\end{array}\right]$ for system (b)).

Solution to system (a): $x=$ \qquad , $y=$ \qquad
Solution to system (b): $x=$ \square , $y=$ \qquad

2. (1 pt) Library/NAU/setLinearAlgebra/m1.pg

Find the inverse of $A B$ if

$$
\begin{aligned}
& A^{-1}=\left[\begin{array}{cc}
4 & 4 \\
-5 & 3
\end{array}\right] \text { and } B^{-1}=\left[\begin{array}{cc}
3 & -2 \\
-2 & 5
\end{array}\right] . \\
& (A B)^{-1}=\left[\begin{array}{ll}
\square & -
\end{array}\right]
\end{aligned}
$$

3. $(\mathbf{1} \mathrm{pt})$ Library/Rochester/setAlgebra34Matrices/cubing $2 \times 2 . p g$ Given the matrix $A=\left[\begin{array}{ll}3 & 3 \\ 0 & 3\end{array}\right]$, find A^{3}.
$A^{3}=\left[\begin{array}{ll}- & - \\ - & -\end{array}\right]$.
4. (1 pt) Library/Rochester/setAlgebra34Matrices/scalarmult3.pg If $A=\left[\begin{array}{ccc}-1 & 1 & 0 \\ -3 & 4 & 1 \\ 3 & -2 & 4\end{array}\right]$ and $B=\left[\begin{array}{ccc}4 & 4 & -4 \\ -3 & 2 & -4 \\ -1 & 2 & -4\end{array}\right]$, then
$3 A-4 B=\left[\begin{array}{lll}- & - & - \\ - & - & -\end{array}\right]$ and $A^{T}=\left[\begin{array}{lll}- & - & - \\ - & - & - \\ - & - & -\end{array}\right]$.
5. (1 pt) Library/Rochester/setLinearAlgebra4InverseMatrix/ur_Ch2_1_4.pg
Are the following matrices invertible? Enter " Y " or " N ".
You must get all of the answers correct to receive credit.
_1. $\left[\begin{array}{ll}6 & -2 \\ 3 & -6\end{array}\right]$
6. $\left[\begin{array}{cc}32 & -3 \\ 0 & 0\end{array}\right]$
7. $\left[\begin{array}{cc}-8 & -3 \\ 32 & 12\end{array}\right]$
8. $\left[\begin{array}{cc}-2 & -8 \\ -6 & -4\end{array}\right]$
9. (1 pt) Library/Rochester/setLinearAlgebra4InverseMatrix/ur_la_4_2.pg
The matrix $\left[\begin{array}{cc}4 & -6 \\ 9 & k\end{array}\right]$ is invertible if and only if $k \neq \ldots$.
10. (1 pt) Library/Rochester/setLinearAlgebra4InverseMatrix/ur_la_4_11.pg
If $A=\left[\begin{array}{cc}5 e^{3 t} \sin (9 t) & 5 e^{4 t} \cos (9 t) \\ 4 e^{3 t} \cos (9 t) & -4 e^{4 t} \sin (9 t)\end{array}\right]$
then $A^{-1}=\left[\begin{array}{ll}\square & \square\end{array}\right]$.
11. (1 pt) Library/Rochester/setLinearAlgebra9Dependence/ur_la_9_7.pg

The vectors
$v=\left[\begin{array}{c}-2 \\ -4 \\ -4\end{array}\right], u=\left[\begin{array}{c}4 \\ 0 \\ -18+k\end{array}\right]$, and $w=\left[\begin{array}{c}4 \\ 2 \\ -4\end{array}\right]$.
are linearly independent if and only if $k \neq$ \qquad
9. (1 pt) Library/Rochester/setLinearAlgebra9Dependence/ur_la_9_10.pg
Express the vector $v=\left[\begin{array}{l}22 \\ 16\end{array}\right]$ as a linear combination of $x=\left[\begin{array}{l}4 \\ 1\end{array}\right]$ and $y=\left[\begin{array}{l}3 \\ 6\end{array}\right]$.
$v=\underline{x+y .}$.
10. (1 pt$)$ Library/Rochester/setLinearAlgebra23QuadraticForms-/ur-la_232.pg
Find the eigenvalues of the matrix
$M=\left[\begin{array}{cc}30 & -40 \\ -40 & -30\end{array}\right]$.
Enter the two eigenvalues, separated by a comma:

Classify the quadratic form $Q(x)=x^{T} A x$:

- A. $Q(x)$ is positive semidefinite
- B. $Q(x)$ is negative semidefinite
- C. $Q(x)$ is negative definite
- D. $Q(x)$ is indefinite
- E. $Q(x)$ is positive definite

11. (1 pt) Library/Rochester/setLinearAlgebra23QuadraticForms/ur_la_23_3.pg
The matrix
$A=\left[\begin{array}{ccc}3 & -1 & 0 \\ -1 & 3 & 0 \\ 0 & 0 & 5\end{array}\right]$
has three distinct eigenvalues, $\lambda_{1}<\lambda_{2}<\lambda_{3}$,
$\lambda_{1}=$ \qquad
$\lambda_{2}=$ \qquad
$\lambda_{3}=$ \qquad
Classify the quadratic form $Q(x)=x^{T} A x$:

- A. $Q(x)$ is negative definite
- B. $Q(x)$ is positive definite
- C. $Q(x)$ is positive semidefinite
- D. $Q(x)$ is negative semidefinite
- E. $Q(x)$ is indefinite

12. ($\mathbf{1} \mathrm{pt})$ Library/TCNJ/TCNJ_BasesLinearlyIndependentSet/problem5.pg
Let W_{1} be the set: $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.
Determine if W_{1} is a basis for \mathbb{R}^{3} and check the correct answer(s) below.

- A. W_{1} is not a basis because it is linearly dependent.
- B. W_{1} is not a basis because it does not span \mathbb{R}^{3}.
- C. W_{1} is a basis.

Let W_{2} be the set: $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$.
Determine if W_{2} is a basis for \mathbb{R}^{3} and check the correct answer(s) below.

- A. W_{2} is not a basis because it does not span \mathbb{R}^{3}.
- B. W_{2} is a basis.
- C. W_{2} is not a basis because it is linearly dependent.

13. (1 pt) Library/TCNJ/TCNJ_LinearIndependence/problem3.pg

If k is a real number, then the vectors $(1, k),(k, 3 k+40)$ are linearly independent precisely when

$$
k \neq a, b
$$

where $a=$ \qquad $=$ and $a<b$.

14. (1 pt) Library/TCNJ/TCNJ_LinearSystems/problem1.pg

Determine whether the following system has no solution, an infinite number of solutions or a unique solution.

$$
\begin{aligned}
& -5 x-3 y=9 \\
& \text { ? 1. } 6 x+2 y=6 \\
& 7 x+1 y=18 \\
& -5 x-3 y=9 \\
& \text { ? 2. } 6 x+2 y=6 \\
& 7 x+1 y=21 \\
& 8 x-16 y=-8 \\
& \text { ? 3. }-6 x+12 y=6 \\
& 14 x-28 y=-14
\end{aligned}
$$

15. (1 pt) Library/TCNJ/TCNJ_LinearSystems/problem2.pg

Determine whether the following system has no solution, an infinite number of solutions or a unique solution.

$$
\begin{aligned}
& \text { ? 1. } \quad \begin{aligned}
30 x+18 y-24 z & =18 \\
10 x+6 y-8 z & =8
\end{aligned} \\
& \text { ?2. } 3 x-6 y+2 z=3 \\
& 3 x-5 y+7 z=6 \\
& \begin{array}{r}
30 x+18 y-24 z=18 \\
10 x+6 y-8 z=6
\end{array}
\end{aligned}
$$

16. (1 pt) Library/TCNJ/TCNJ_LinearSystems/problem3.pg

Give a geometric description of the following systems of equations

$$
\begin{aligned}
& \text { ? }-7 x-3 y=3 \\
& \text { ? 1. }-2 x-3 y=5 \\
& -3 x+3 y=-8 \\
& -20 x-8 y=-8 \\
& \text { ?2. }-15 x-6 y=-6 \\
& 35 x+14 y=14 \\
& -7 x-3 y=3 \\
& \text { ?3. }-2 x-3 y=5 \\
& -3 x+3 y=-7
\end{aligned}
$$

17. (1 pt) Library/TCNJ/TCNJ_LinearSystems/problem4.pg

Give a geometric description of the following system of equations

$$
\begin{array}{rlr}
2 x+4 y-6 z & = & -12 \\
-3 x-6 y+9 z & = & 18
\end{array}
$$

$$
\begin{aligned}
& \text { ? 2. } \begin{aligned}
2 x+4 y-6 z & =12 \\
-3 x-6 y+9 z & =16 \\
\text { ? 3. } & 2 x+4 y-6 z=12 \\
-x+5 y-9 z & =1
\end{aligned}
\end{aligned}
$$

18. (1 pt) Library/TCNJ/TCNJ LinearSystems/problem11.pg

Give a geometric description of the following systems of equations.

$$
\begin{aligned}
& \text { ?1. } \begin{aligned}
x-9 y & =-2 \\
-6 x-6 y & =3
\end{aligned} \\
& 2 x-10 y=-10 \\
& 5 x-25 y=-25 \\
& 2 x-10 y=-10 \\
& 5 x-25 y=-28
\end{aligned}
$$

19. (1 pt) Library/TCNJ/TCNJ_MatrixEquations/problem4.pg

Let $A=\left[\begin{array}{ccc}-5 & 2 & 4 \\ -4 & 4 & -3 \\ 4 & 2 & 1\end{array}\right]$ and $x=\left[\begin{array}{c}2 \\ 3 \\ -4\end{array}\right]$.
? 1. What does $A x$ mean?
20. (1 pt) Library/TCNJ/TCNJ_MatrixEquations/problem13.pg Do the following sets of vectors span \mathbb{R}^{3} ?

$$
\begin{aligned}
& \text { ? } 1 .\left[\begin{array}{l}
-2 \\
-3 \\
-3
\end{array}\right],\left[\begin{array}{l}
-6 \\
-9 \\
-8
\end{array}\right],\left[\begin{array}{l}
-10 \\
-15 \\
-13
\end{array}\right],\left[\begin{array}{l}
14 \\
21 \\
18
\end{array}\right] \\
& \text { ? 2. }\left[\begin{array}{c}
2 \\
3 \\
-1
\end{array}\right],\left[\begin{array}{c}
-4 \\
-6 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
3 \\
0
\end{array}\right] \\
& \text { ?3. }\left[\begin{array}{c}
-2 \\
3 \\
3
\end{array}\right],\left[\begin{array}{c}
5 \\
-5 \\
7
\end{array}\right],\left[\begin{array}{c}
-4 \\
2 \\
-10
\end{array}\right] \\
& \text { ? } 4 .
\end{aligned}
$$

21. (1 pt) Library/TCNJ/TCNJ_MatrixInverse/problem1.pg If

$$
A=\left[\begin{array}{cc}
-5 & -6 \\
-3 & 1
\end{array}\right]
$$

then
$A^{-1}=\left[\begin{array}{ll}- & - \\ - & -\end{array}\right]$.
Given $\vec{b}=\left[\begin{array}{l}-1 \\ -1\end{array}\right]$, solve $A \vec{x}=\vec{b}$.
$\vec{x}=[\square$.
22. (1 pt) Library/TCNJ/TCNJ_VectorEquations/problem5.pg

Let $H=\operatorname{span}\{u, v\}$. For each of the following sets of vectors determine whether H is a line or a plane.

$$
\begin{aligned}
& \text { ? 1. } u=\left[\begin{array}{l}
-2 \\
-1 \\
-5
\end{array}\right], v=\left[\begin{array}{l}
-7 \\
-2 \\
-7
\end{array}\right], \\
& \text { ? 2. } u=\left[\begin{array}{l}
-1 \\
-3 \\
-2
\end{array}\right], v=\left[\begin{array}{l}
3 \\
9 \\
6
\end{array}\right], \\
& \text { ? 3. } u=\left[\begin{array}{c}
5 \\
-5 \\
3
\end{array}\right], v=\left[\begin{array}{c}
20 \\
-19 \\
11
\end{array}\right], \\
& \text { ? 4. } u=\left[\begin{array}{c}
8 \\
5 \\
3
\end{array}\right], v=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],
\end{aligned}
$$

23. (1 pt$)$ Library/WHFreeman/Holt linear_algebra/Chaps_1-42.2.8.pg

Let $\mathbf{a}_{1}=\left[\begin{array}{l}7 \\ 4\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}21 \\ 12\end{array}\right]$.
Is \mathbf{b} in the span of of \mathbf{a}_{1} ?

- A. Yes, \mathbf{b} is in the span.
- B. No, \mathbf{b} is not in the span.
- C. We cannot tell if \mathbf{b} is in the span.

Either fill in the coefficients of the vector equation, or enter "NONE" if no solution is possible.
$\mathbf{b}=-\mathbf{a}_{1}$
24. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-412.2.31.pg

$$
\text { Let } A=\left[\begin{array}{cc}
-5 & 20 \\
5 & -32 \\
1 & -9
\end{array}\right]
$$

We want to determine if the system $A \mathbf{x}=\mathbf{b}$ has a solution for every $\mathbf{b} \in \mathbb{R}^{3}$.

Select the best answer.

- A. There is not a solution for every $\mathbf{b} \in \mathbb{R}^{3}$ since $2<3$.
- B. There is a solution for every $\mathbf{b} \in \mathbb{R}^{3}$ but we need to row reduce A to show this.
- C. There is a solution for every $\mathbf{b} \in \mathbb{R}^{3}$ since $2<3$
- D. There is a not solution for every $\mathbf{b} \in \mathbb{R}^{3}$ but we need to row reduce A to show this.
- E. We cannot tell if there is a solution for every $\mathbf{b} \in \mathbb{R}^{3}$.

25. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-412.2.56.pg

What conditions on a matrix A insures that $A \mathbf{x}=\mathbf{b}$ has a solution for all \mathbf{b} in \mathbb{R}^{n} ?

Select the best statement. (The best condition should work with any positive integer n.)

- A. The equation will have a solution for all \mathbf{b} in \mathbb{R}^{n} as long as the columns of A do not include the zero column.
- B. The equation will have a solution for all \mathbf{b} in \mathbb{R}^{n} as long as the columns of A span \mathbb{R}^{n}.
- C. The equation will have a solution for all \mathbf{b} in \mathbb{R}^{n} as long as no column of A is a scalar multiple of another column.
- D. There is no easy test to determine if the equation will have a solution for all \mathbf{b} in \mathbb{R}^{n}.
- E. none of the above

26. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4/2.2.57.pg

Assume $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ spans \mathbb{R}^{3}.
Select the best statement.

- A. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ always spans \mathbb{R}^{3}.
- B. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ spans \mathbb{R}^{3} unless \mathbf{u}_{4} is the zero vector.
- C. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ spans \mathbb{R}^{3} unless \mathbf{u}_{4} is a scalar multiple of another vector in the set.
- D. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ never spans \mathbb{R}^{3}.
- E. There is no easy way to determine if $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ spans \mathbb{R}^{3}.
- F. none of the above

27. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4/2.2.58.pg

Assume $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ does not span \mathbb{R}^{3}.
Select the best statement.

- A. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ always spans \mathbb{R}^{3}.
- B. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ may, but does not have to, span \mathbb{R}^{3}.
- C. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ never spans \mathbb{R}^{3}.
- D. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ spans \mathbb{R}^{3} unless \mathbf{u}_{4} is the zero vector.
- E. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ spans \mathbb{R}^{3} unless \mathbf{u}_{4} is a scalar multiple of another vector in the set.
- F. none of the above

28. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4/2.3.40.pg

Let \mathbf{S} be a set of m vectors in \mathbb{R}^{n} with $m>n$.
Select the best statement.

- A. The set \mathbf{S} is linearly dependent.
- B. The set \mathbf{S} is linearly independent, as long as no vector in \mathbf{S} is a scalar multiple of another vector in the set.
- C. The set \mathbf{S} is linearly independent.
- D. The set \mathbf{S} could be either linearly dependent or linearly independent, depending on the case.
- E. The set \mathbf{S} is linearly independent, as long as it does not include the zero vector.
- F. none of the above

29. (1 pt) Library/WHFreeman/Holt linear_algebra/Chaps_1-4/2.3.41.pg

Let A be a matrix with more rows than columns.
Select the best statement.

- A. The columns of A are linearly independent, as long as they does not include the zero vector.
- B. The columns of A must be linearly dependent.
- C. The columns of A must be linearly independent.
- D. The columns of A are linearly independent, as long as no column is a scalar multiple of another column in A
- E. The columns of A could be either linearly dependent or linearly independent depending on the case.
- F. none of the above

30. (1 pt) Library/WHFreeman/Holt linear_algebra/Chaps_1-412.3.42.pg

Let A be a matrix with more columns than rows.
Select the best statement.

- A. The columns of A could be either linearly dependent or linearly independent depending on the case.
- B. The columns of A are linearly independent, as long as no column is a scalar multiple of another column in A
- C. The columns of A are linearly independent, as long as they does not include the zero vector.
- D. The columns of A must be linearly dependent.
- E. none of the above

31. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-412.3.46.pg

Let $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ be a linearly dependent set of vectors.
Select the best statement.

- A. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ is a linearly independent set of vectors unless \mathbf{u}_{4} is a linear combination of other vectors in the set.
- B. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ could be a linearly independent or linearly dependent set of vectors depending on the vectors chosen.
- C. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ is always a linearly dependent set of vectors.
- D. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ is a linearly independent set of vectors unless $\mathbf{u}_{4}=\mathbf{0}$.
- E. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ is always a linearly independent set of vectors.
- F. none of the above

32. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4/2.3.47.pg

Let $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ be a linearly independent set of vectors. Select the best statement.

- A. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ could be a linearly independent or linearly dependent set of vectors depending on the vectors chosen.
- B. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is never a linearly independent set of vectors.
- C. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is always a linearly independent set of vectors.
- D. none of the above

33. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4/3.3.42.pg

A must be a square matrix to be invertible. ?
34. ($\mathbf{1} \mathrm{pt}$) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4/4.1.22.pg

Find the null space for $A=\left[\begin{array}{ll}9 & 2 \\ 7 & 6\end{array}\right]$.
What is null (A) ?

- A. $\operatorname{span}\left\{\left[\begin{array}{l}7 \\ 9\end{array}\right]\right\}$
- B. $\operatorname{span}\left\{\left[\begin{array}{c}-2 \\ 9\end{array}\right]\right\}$
- C. $\operatorname{span}\left\{\left[\begin{array}{l}9 \\ 2\end{array}\right]\right\}$
- D. $\operatorname{span}\left\{\left[\begin{array}{l}9 \\ 7\end{array}\right]\right\}$
- E. $\left\{\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\}$
- F. \mathbb{R}^{2}
- G. $\operatorname{span}\left\{\left[\begin{array}{c}-7 \\ 9\end{array}\right]\right\}$
- H. none of the above

35. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4/4.1.27.pg

Find the null space for $A=\left[\begin{array}{cc}2 & -3 \\ 1 & 4 \\ -7 & -4\end{array}\right]$.
What is null (A) ?

- A. $\operatorname{span}\left\{\left[\begin{array}{c}2 \\ 1 \\ -7\end{array}\right]\right\}$
- B. $\operatorname{span}\left\{\left[\begin{array}{c}-3 \\ 2\end{array}\right]\right\}$
- C. $\left\{\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\}$
- D. \mathbb{R}^{3}
- E. $\operatorname{span}\left\{\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\right\}$
- F. $\operatorname{span}\left\{\left[\begin{array}{c}+3 \\ 2\end{array}\right]\right\}$
- G. $\operatorname{span}\left\{\left[\begin{array}{c}2 \\ -3\end{array}\right]\right\}$
- H. \mathbb{R}^{2}
- I. none of the above

36. (1 pt$)$ Library/WHFreeman/Holt_linear_algebra/Chaps_1-4/4.1.28.pg

Find the null space for $A=\left[\begin{array}{ll}3 & -15 \\ 2 & -10 \\ 5 & -25\end{array}\right]$.
What is $\operatorname{null}(A) ?$

- A. $\operatorname{span}\left\{\left[\begin{array}{c}-25 \\ 5\end{array}\right]\right\}$
- B. \mathbb{R}^{2}
- C. \mathbb{R}^{3}
- D. $\operatorname{span}\left\{\left[\begin{array}{c}+5 \\ 1\end{array}\right]\right\}$
- E. $\operatorname{span}\left\{\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\}$
- F. $\operatorname{span}\left\{\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\right\}$
- G. $\operatorname{span}\left\{\left[\begin{array}{l}3 \\ 2 \\ 5\end{array}\right]\right\}$
- H. none of the above

37. ($\mathbf{1} \mathrm{pt}$) Library/WHFreeman/Holt_linear_algebra/Chaps_1-414.1.30.pg

Find the null space for $A=\left[\begin{array}{ccc}1 & 2 & 9 \\ -6 & -2 & -24 \\ -1 & 4 & 9\end{array}\right]$.
What is null (A) ?

- A. $\operatorname{span}\left\{\left[\begin{array}{c}1 \\ -6 \\ -1\end{array}\right]\right\}$
- B. $\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 2 \\ 9\end{array}\right]\right\}$
- C. \mathbb{R}^{3}
- D. $\operatorname{span}\left\{\left[\begin{array}{c}-3 \\ -3 \\ 1\end{array}\right]\right\}$
- E. $\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 2 \\ 9\end{array}\right],\left[\begin{array}{c}-6 \\ -2 \\ -24\end{array}\right]\right\}$
- F. $\operatorname{span}\left\{\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\right\}$
- G. none of the above

38. (1 pt$)$ Library/WHFreeman/Holt_linear_algebra/Chaps_1-4/4.2.32a.pg
Find a basis for the null space of matrix A.
$A=\left[\begin{array}{ccccc}1 & 0 & -4 & 3 & 0 \\ 0 & 1 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 & 4\end{array}\right]$
Basis $=\left[\begin{array}{l}- \\ - \\ - \\ -\end{array}\right]\left[\begin{array}{l}- \\ - \\ - \\ -\end{array}\right]$
39. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-414.3.47.pg

Indicate whether the following statement is true or false.
? 1. If A and B are equivalent matrices, then $\operatorname{col}(A)=\operatorname{col}($ $B)$.
40. (1 pt) Library/maCalcDB/setLinearAlgebra3Matrices/ur_la_3_6.pg

If A and B are 4×9 matrices, and C is a 2×4 matrix, which of the following are defined?

- A. B^{T}
- B. $C-A$
- C. $A-B$
- D. $C B$
- E. $A B^{T}$
- F. $A C$

41. (1 pt) Library/maCalcDB/setLinearAlgebra4InverseMatrix/ur_la_4_8.pg

Determine which of the formulas hold for all invertible $n \times n$ matrices A and B

- A. $A^{2} B^{9}$ is invertible
- B. $\left(A+A^{-1}\right)^{4}=A^{4}+A^{-4}$
- C. $\left(I_{n}-A\right)\left(I_{n}+A\right)=I_{n}-A^{2}$
- D. $(A+B)(A-B)=A^{2}-B^{2}$
- E. $A B=B A$
- F. $A+I_{n}$ is invertible

42. (1 pt) UI/DIAGtfproblem1.pg
A, P and D are $n \times n$ matrices.

Check the true statements below:

- A. If A is diagonalizable, then A has n distinct eigenvalues.
- B. If A is invertible, then A is diagonalizable.
- C. A is diagonalizable if A has n distinct linearly independent eigenvectors.
- D. If A is diagonalizable, then A is invertible.
- E. If A is orthogonally diagonalizable, then A is symmetric.
- F. A is diagonalizable if A has n distinct eigenvectors.
- G. If $A P=P D$, with D diagonal, then the nonzero columns of P must be eigenvectors of A.
- H. If there exists a basis for \mathbb{R}^{n} consisting entirely of eigenvectors of A, then A is diagonalizable.
- I. If A is symmetric, then A is diagonalizable.
- J. A is diagonalizable if and only if A has n eigenvalues, counting multiplicities.
- K. A is diagonalizable if $A=P D P^{-1}$ for some diagonal matrix D and some invertible matrix P.
- L. If A is symmetric, then A is orthogonally diagonalizable.
- M. If A is diagonalizable, then A is symmetric.

43. (1 pt) UI/Fall14/lin_span2.pg

Which of the following sets of vectors span R^{3} ?

Which of the following sets of vectors are linearly independent?

- A. $\left[\begin{array}{c}-7 \\ -4 \\ 8\end{array}\right],\left[\begin{array}{c}-6 \\ 9 \\ 2\end{array}\right],\left[\begin{array}{l}5 \\ 0 \\ 1\end{array}\right]$
- B. $\left[\begin{array}{c}1 \\ -5\end{array}\right],\left[\begin{array}{c}-7 \\ 1\end{array}\right]$
- C. $\left[\begin{array}{l}0 \\ 0\end{array}\right],\left[\begin{array}{c}-2 \\ 8\end{array}\right]$
- D. $\left[\begin{array}{l}5 \\ 7\end{array}\right],\left[\begin{array}{c}2 \\ -8\end{array}\right],\left[\begin{array}{l}-6 \\ -4\end{array}\right]$
- E. $\left[\begin{array}{c}-7 \\ 8 \\ 0\end{array}\right],\left[\begin{array}{c}-5 \\ 3 \\ 0\end{array}\right],\left[\begin{array}{c}-9 \\ 4 \\ 0\end{array}\right]$
- F. $\left[\begin{array}{c}-2 \\ 6 \\ 5\end{array}\right],\left[\begin{array}{c}7 \\ 2 \\ -8\end{array}\right],\left[\begin{array}{c}5 \\ 8 \\ -3\end{array}\right]$

44. (1 pt) UI/Fall14/lin_span.pg

Let $A=\left[\begin{array}{c}1 \\ 1 \\ -4\end{array}\right], B=\left[\begin{array}{c}4 \\ -1 \\ -21\end{array}\right]$, and $C=\left[\begin{array}{c}-1 \\ 0 \\ 5\end{array}\right]$.
Which of the following best describes the span of the above 3 vectors?

- A. 0-dimensional point in R^{3}
- B. 1-dimensional line in R^{3}
- C. 2-dimensional plane in R^{3}
- D. R^{3}

Determine whether or not the three vectors listed above are linearly independent or linearly dependent.

- A. linearly dependent
- B. linearly independent

If they are linearly dependent, determine a non-trivial linear relation. Otherwise, if the vectors are linearly independent, enter 0 's for the coefficients, since that relationship always holds.
\qquad $A+$ \qquad $C=0$.

45. (1 pt) UI/orthog.pg

All vectors and subspaces are in \mathbb{R}^{n}.
Check the true statements below:

- A. If \mathbf{v} and \mathbf{w} are both eigenvectors of A and if A is symmetric, then $\mathbf{v} \cdot \mathbf{w}=0$.
- B. If x is not in a subspace W, then $x-\operatorname{proj}_{W}(x)$ is not zero.
- C. If $W=\operatorname{Span}\left\{x_{1}, x_{2}, x_{3}\right\}$ and if $\left\{v_{1}, v_{2}, v_{3}\right\}$ is an orthonormal set in W, then $\left\{v_{1}, v_{2}, v_{3}\right\}$ is an orthonormal basis for W.
- D. If $A \mathbf{v}=r \mathbf{v}$ and $A \mathbf{w}=s \mathbf{w}$ and $r \neq s$, then $\mathbf{v} \cdot \mathbf{w}=0$.
- E. If $\left\{v_{1}, v_{2}, v_{3}\right\}$ is an orthonormal set, then the set $\left\{v_{1}, v_{2}, v_{3}\right\}$ is linearly independent.
- F. In a $Q R$ factorization, say $A=Q R$ (when A has linearly independent columns), the columns of Q form an orthonormal basis for the column space of A.
- G. If A is symmetric, $A \mathbf{v}=r \mathbf{v}, A \mathbf{w}=s \mathbf{w}$ and $r \neq s$, then $\mathbf{v} \cdot \mathbf{w}=0$.

46. (1 pt$)$ local/Library/Rochester/setLinearAlgebra3Matrices/ur」a_3_14.pg
Find the ranks of the following matrices.

$$
\begin{aligned}
& \operatorname{rank}\left[\begin{array}{cc}
4 & -5 \\
-8 & 10
\end{array}\right]=- \\
& \operatorname{rank}\left[\begin{array}{ccc}
5 & 1 & -5 \\
0 & 4 & 0 \\
-4 & 0 & 4
\end{array}\right]=- \\
& \operatorname{rank}\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 8 & 0
\end{array}\right]=-
\end{aligned}
$$

47. (1 pt) local/Library/TCNJ/TCNJ_BasesLinearlyIndependentSet-

/3.pg

Check the true statements below:

- A. The column space of a matrix A is the set of solutions of $A x=b$.
- B. A basis is a spanning set that is as large as possible.
- C. If B is an echelon form of a matrix A, then the pivot columns of B form a basis for ColA.
- D. The columns of an invertible $n \times n$ matrix form a basis for \mathbb{R}^{n}.
- E. If $H=\operatorname{Span}\left\{b_{1}, \ldots, b_{p}\right\}$, then $\left\{b_{1}, \ldots, b_{p}\right\}$ is a basis for H.

48. (1 pt) local/Library/TCNJ/TCNJ_LinearSystems/problem6.pg

Give a geometric description of the following systems of equations

$$
\begin{aligned}
& \text { ? 1. } \quad \begin{aligned}
5 x+15 y+49 z & =3 \\
-x-2 y-7 z & =3
\end{aligned} \\
& 4 x+12 y+40 z=0 \\
& 9 x+12 y+9 z=15 \\
& \text { ?2. } 15 x+20 y+15 z=25 \\
& -18 x-24 y-18 z=-30 \\
& 5 x-y+3 z=-5 \\
& 4 x+4 y-5 z=4 \\
& -23 x-5 y+z=7 \\
& 5 x-y+3 z=-5 \\
& \text { ?4. } \quad \begin{aligned}
4 x+4 y-5 z & =4 \\
-23 x-5 y+z & =8
\end{aligned}
\end{aligned}
$$

Hint: (Instructor hint preview: show the student hint after 1 attempts. The current number of attempts is 0 .)

Reduce the augmented matrix and solve for it. If it has unique solutions, three planes intersect at a point; no solutions indicates no common intersection; one free variable shows intersection on a line; two free variables means identical planes.

49. (1 pt) local/Library/UI/2.3.49.pg

Let \mathbf{u}_{4} be a linear combination of $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$.
Select the best statement.

- A. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is never a linearly dependent set of vectors.
- B. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is a linearly dependent set of vectors unless one of $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is the zero vector.
- C. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ is always a linearly independent set of vectors.
- D. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is a linearly dependent set of vectors.
- E. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ could be a linearly dependent or linearly independent set of vectors depending on the vectors chosen.
- F. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ is never a linearly independent set of vectors.
- G. none of the above

50. (1 pt) local/Library/UI/4.1.23.pg

Find the null space for $A=\left[\begin{array}{ccc}1 & 0 & 9 \\ 0 & 1 & -8\end{array}\right]$.
What is $\operatorname{null}(A)$?

- A. \mathbb{R}^{2}
- B. $\operatorname{span}\left\{\left[\begin{array}{c}+8 \\ -9 \\ 1\end{array}\right]\right\}$
- C. \mathbb{R}^{3}
- D. $\operatorname{span}\left\{\left[\begin{array}{l}-9 \\ +8\end{array}\right]\right\}$
- E. $\operatorname{span}\left\{\left[\begin{array}{c}1 \\ 0 \\ -9\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ +8\end{array}\right]\right\}$
- F. $\operatorname{span}\left\{\left[\begin{array}{l}+8 \\ -9\end{array}\right]\right\}$
- G. $\operatorname{span}\left\{\left[\begin{array}{c}-9 \\ +8 \\ 1\end{array}\right]\right\}$
- H. none of the above

51. (1 pt) local/Library/UI/4.1.77.pg

The null space for the matrix $\left[\begin{array}{ccccc}1 & 7 & -2 & 14 & 0 \\ 3 & 0 & 1 & -2 & 3 \\ 6 & 1 & -1 & 0 & 4\end{array}\right]$
is spanA,B where $\mathrm{A}=\left[\begin{array}{l}\bar{\square} \\ \square \\ \square\end{array}\right] \mathrm{B}=\left[\begin{array}{l}\bar{\square} \\ \bar{\square} \\ \square\end{array}\right]$
52. (1 pt) local/Library/UI/4.3.3.pg

Find bases for the column space and the null space of matrix A. You should verify that the Rank-Nullity Theorem holds. An equivalent echelon form of matrix A is given to make your work easier.
$A=\left[\begin{array}{cccc}1 & 0 & -4 & -3 \\ -2 & 1 & 15 & 7 \\ 0 & 1 & 7 & 1\end{array}\right]\left[\begin{array}{cccc}1 & 0 & -4 & -3 \\ 0 & 1 & 7 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$
Basis for the column space of $A=\left[\begin{array}{l}- \\ -\end{array}\right]\left[\begin{array}{l}- \\ - \\ -\end{array}\right]$
Basis for the null space of $A=\left[\begin{array}{l}- \\ - \\ -\end{array}\right]\left[\begin{array}{l}- \\ - \\ - \\ -\end{array}\right]$
53. (1 pt) local/Library/UI/6a.pg

The null space for the matrix $\left[\begin{array}{ccc}2 & 0 & 5 \\ -1 & 6 & 2 \\ 4 & 4 & -1 \\ 5 & 1 & 0 \\ 4 & 1 & 1\end{array}\right]$

54. (1 pt) local/Library/UI/Fall14/HW7_4.pg

Determine if the subset of \mathbb{R}^{2} consisting of vectors of the form $\left[\begin{array}{l}a \\ b\end{array}\right]$, where a and b are integers, is a subspace.

Select true or false for each statement.
The set contains the zero vector

- A. True
- B. False

This set is closed under vector addition

- A. True
- B. False

This set is closed under scalar multiplications

- A. True
- B. False

This set is a subspace

- A. True
- B. False

55. (1 pt) local/Library/UI/Fall14/HW7.5.pg

Determine if the subset of \mathbb{R}^{3} consisting of vectors of the form $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$, where $a \geq 0, b \geq 0$, and $c \geq 0$ is a subspace.

Select true or false for each statement.
The set contains the zero vector

- A. True
- B. False

This set is closed under vector addition

- A. True
- B. False

This set is closed under scalar multiplications

- A. True
- B. False

This set is a subspace

- A. True
- B. False

56. (1 pt) local/Library/UI/Fall14/HW7_6.pg

If A is an $n \times n$ matrix and $\mathbf{b} \neq 0$ in \mathbb{R}^{n}, then consider the set of solutions to $A \mathbf{x}=\mathbf{b}$.

Select true or false for each statement.
The set contains the zero vector

- A. True
- B. False

This set is closed under vector addition

- A. True
- B. False

This set is closed under scalar multiplications

- A. True
- B. False

This set is a subspace

- A. True
- B. False

57. (1 pt) local/Library/UI/Fall14/HW7_11.pg

Find all values of x for which $\operatorname{rank}(A)=2$.

$$
A=\left[\begin{array}{cccc}
2 & 2 & 0 & 7 \\
4 & 8 & x & 21 \\
-6 & -18 & -12 & -42
\end{array}\right]
$$

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

58. (1 pt) local/Library/UI/Fal114/HW7_12.pg

Suppose that A is a 6×7 matrix which has a null space of dimension 6. The rank of $A=$

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

59. (1 pt) local/Library/UI/Fall14/HW7_25.pg

Indicate whether the following statement is true or false?
If $S=\operatorname{span} u_{1}, u_{2}, u_{3}$, then $\operatorname{dim}(S)=3$.

- A. True
- B. False

60. (1 pt) local/Library/UI/Fall14/HW7_27.pg

Determine the rank and nullity of the matrix.
$\left[\begin{array}{cccc}2 & -1 & 0 & 1 \\ 5 & 2 & 1 & -4 \\ -1 & -4 & -1 & 6 \\ -8 & -5 & -2 & 9\end{array}\right]$

The rank of the matrix is

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

The nullity of the matrix is

- A. -4
- B. -3
-C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

61. (1 pt) local/Library/UI/Fall14/HW8_2.pg

Evaluate the following 3×3 determinant. Use the properties of determinants to your advantage.

$$
\left|\begin{array}{ccc}
-7 & 0 & -4 \\
-7 & 0 & 3 \\
-8 & 0 & 2
\end{array}\right|
$$

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

Does the matrix have an inverse?

- A. No
- B. Yes

62. (1 pt) local/Library/UI/Fall14/HW8_3.pg

Given the matrix $\left[\begin{array}{r}-2 \\ 0 \\ -1 \\ 0 \\ -4 \\ -4 \\ -1 \\ 0 \\ -2\end{array}\right]$

- A. -12
- B. -5
- C. -4
- D. -2
- E. -1
- F. 0
- G. 1
- H. 3
- I. 5
- J. 7
- K. None of those above
(b) Does the matrix have an inverse?
- A. No
- B. Yes

63. (1 pt) local/Library/UI/Fall14/HW8_4.pg

If A and B are 4×4 matrices, $\operatorname{det}(A)=-4, \operatorname{det}(B)=9$, then $\operatorname{det}(A B)=$

- A. -15
- B. -36
- C. -11
- D. -8
- E. -5
- F. 0
- G. 3
- H. 6
- I. 8
- J. 12
- K. None of those above
$\operatorname{det}(-3 A)=$
- A. -40
- B. -324
- C. -28
- D. -21
- E. -10
- F. -1
- G. 10
- H. 21
- I. 28
- J. 36
- K. 40
- L. None of those above

$$
\operatorname{det}\left(A^{T}\right)=
$$

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. None of those above
$\operatorname{det}\left(B^{-1}\right)=$
- A. -0.5
- B. -0.4
- C. -0.1111111111111111
- D. 0
- E. 0.111111111111111
- F. 0.4
- G. 0.5
- H. 1
- I. None of those above
$\operatorname{det}\left(B^{2}\right)=$
- A. -81
- B. -36
- C. -12
- D. 0
- E. 12
- F. 36
- G. 81
- H. 1024
- I. None of those above

64. (1 pt) local/Library/UI/Fall14/HW8_5.pg

Find the determinant of the matrix
$A=\left[\begin{array}{cccc}-1 & 0 & 0 & 0 \\ -8 & -5 & 0 & 0 \\ -1 & 1 & -4 & 0 \\ 6 & -2 & 8 & 6\end{array}\right]$.
$\operatorname{det}(A)=$

- A. -400
- B. -360
- C. -288
- D. 0
- E. 120
- F. -120
- G. 240
- H. 360
- I. 400
- J. None of those above

65. (1 pt) local/Library/UI/Fall14/HW8_7.pg

Suppose that a 4×4 matrix A with rows v_{1}, v_{2}, v_{3}, and v_{4} has determinant $\operatorname{det} A=6$. Find the following determinants:
$B=\left[\begin{array}{c}2 v_{1} \\ v_{2} \\ v_{3} \\ v_{4}\end{array}\right] \operatorname{det}(B)=$

- A. -18
- B. -15
- C. -12
- D. -9
- E. 0
- F. 9
- G. 12
- H. 15
- I. 18
- J. None of those above

$$
C=\left[\begin{array}{l}
v_{4} \\
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] \operatorname{det}(C)=
$$

- A. -18
- B. -6
- C. -9
- D. -3
- E. 0
- F. 3
- G. 9
- H. 12
- I. 18
- J. None of those above

$$
\begin{aligned}
& D=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}+3 v_{2}
\end{array}\right] \\
& \operatorname{det}(D)=
\end{aligned}
$$

- A. -18
- B. 6
- C. -9
- D. -3
- E. 0
- F. 3
- G. 9
- H. 12
- I. 18
- J. None of those above

66. (1 pt) local/Library/UI/Fall14/HW8_8.pg

Use determinants to determine whether each of the following sets of vectors is linearly dependent or independent.
$\left[\begin{array}{l}-1 \\ -4\end{array}\right],\left[\begin{array}{l}7 \\ 7\end{array}\right]$,

- A. Linearly Dependent
- B. Linearly Independent
$\left[\begin{array}{l}1 \\ 5 \\ 4\end{array}\right],\left[\begin{array}{l}-2 \\ -8 \\ -6\end{array}\right],\left[\begin{array}{c}-5 \\ -19 \\ -11\end{array}\right]$,
- A. Linearly Dependent
- B. Linearly Independent
$\left[\begin{array}{c}-5 \\ 10\end{array}\right],\left[\begin{array}{c}1 \\ -2\end{array}\right]$,
- A. Linearly Dependent
- B. Linearly Independent
$\left[\begin{array}{l}-1 \\ -5 \\ -1\end{array}\right],\left[\begin{array}{c}2 \\ 10 \\ 2\end{array}\right],\left[\begin{array}{l}1 \\ 5 \\ 1\end{array}\right]$,
- A. Linearly Dependent
- B. Linearly Independent

67. (1 pt) local/Library/UI/Fal114/HW8_10.pg

$$
A=\left[\begin{array}{rrrr}
-9 & 2 & 0 & -4 \\
1 & -2 & 0 & 0 \\
0 & -7 & 0 & 0 \\
-5 & 9 & 1 & -6
\end{array}\right]
$$

The determinant of the matrix is

- A. -1890
- B. -1024
- C. -630
- D. -28
- E. -210
- F. 0
- G. 324
- H. 630
- I. 1024
- J. None of those above

Hint: Find a good row or column and expand by minors.
68. (1 pt) local/Library/UI/Fal144/HW8_11.pg

Find the determinant of the matrix
$M=\left[\begin{array}{ccccc}3 & 0 & 0 & 2 & 0 \\ 2 & 0 & -3 & 0 & 0 \\ 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 & -1 \\ 0 & 2 & -2 & 0 & 0\end{array}\right]$.
$\operatorname{det}(M)=$

- A. -48
- B. -35
- C. -20
- D. -10
- E. -5
- F. 5
- G. 18
- H. 20
- I. 81
- J. None of those above

69. (1 pt) local/Library/UI/Fall14/HW8_12.pg

$$
A=\left[\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{array}\right]
$$

And now for the grand finale: The determinant of the matrix is

- A. -362880
- B. -5
- C. 0
- D. 5
- E. 20
- F. 30
- G. 40
- H. 362880
- I. None of the above

Hint: Remember that a square linear system has a unique solution if the determinant of the coefficient matrix is non-zero.

A system of equations can have exactly 2 solution.

- A. True
- B. False

A system of linear equations can have exactly 2 solution.

- A. True
- B. False

A system of linear equations has no solution if and only if the last column of its augmented matrix corresponds to a pivot column.

- A. True
- B. False

A system of linear equations has an infinite number of solutions if and only if its associated augmented matrix has a column corresponding to a free variable.

- A. True
- B. False

If a system of linear equations has an infinite number of solutions, then its associated augmented matrix has a column corresponding to a free variable.

- A. True
- B. False

If a linear system has four equations and seven variables, then it must have infinitely many solutions.

- A. True
- B. False

Every linear system with free variables has infinitely many solutions.

- A. True
- B. False

Any linear system with more variables than equations cannot have a unique solution.

- A. True
- B. False

If a linear system has the same number of equations and variables, then it must have a unique solution.

- A. True
- B. False

A vector b is a linear combination of the columns of a ma$\operatorname{trix} A$ if and only if the equation $A x=b$ has at least one solution.

- A. True
- B. False

If the columns of an $m \times n$ matrix, A span \mathbb{R}^{m}, then the equation, $A x=b$ is consistent for each b in \mathbb{R}^{m}.

- A. True
- B. False

If A is an $m \times n$ matrix and if the equation $A x=b$ is inconsistent for some b in \mathbb{R}^{m}, then A cannot have a pivot position in every row.

- A. True
- B. False

Any linear combination of vectors can always be written in the form $A x$ for a suitable matrix A and vector x.

- A. True
- B. False

If the equation $A x=b$ is inconsistent, then b is not in the set spanned by the columns of A.

- A. True
- B. False

If A is an $m \times n$ matrix whose columns do not span \mathbb{R}^{m}, then the equation $A x=b$ is inconsistent for some b in \mathbb{R}^{m}.

- A. True
- B. False

Every linear system with free variables has infinitely many solutions.

- A. True
- B. False

86. (1 pt) local/Library/UI/Fall14/quiz2_2.pg

Find the area of the triangle with vertices $(1,3),(8,5)$, and $(4,9)$.
Area $=$

- A. 2
- B. 5
- C. 6
- D. 8
- E. 9
- F. 12
- G. 18
- H. 20
- I. 25
- J. None of those above

Hint: The area of a triangle is half the area of a parallelogram. Find the vectors that determine the parallelogram of interest. If you have difficulty, visualizing the problem may be helpful: plot the 3 points.
87. (1 pt) local/Library/UI/Fall14/quiz2_6.pg

Determine if v is an eigenvector of the matrix A.

1. $A=\left[\begin{array}{ccc}5 & -3 & -10 \\ -2 & 4 & 8 \\ 3 & -3 & -8\end{array}\right], v=\left[\begin{array}{c}-1 \\ 1 \\ -1\end{array}\right]$

- A. Yes
- B. No

2. $A=\left[\begin{array}{ccc}-1 & -2 & 0 \\ 0 & -3 & 0 \\ -6 & -2 & 5\end{array}\right], v=\left[\begin{array}{c}5 \\ 7 \\ -1\end{array}\right]$

- A. Yes
- B. No

3. $A=\left[\begin{array}{ccc}0 & -2 & -4 \\ 10 & 2 & -6 \\ -5 & -2 & 1\end{array}\right], v=\left[\begin{array}{c}-1 \\ 2 \\ -1\end{array}\right]$

- A. Yes
- B. No

4. $A=\left[\begin{array}{ccc}5 & 1 & 8 \\ 6 & 0 & 8 \\ -3 & -1 & -6\end{array}\right], v=\left[\begin{array}{l}4 \\ 5 \\ 1\end{array}\right]$

- A. Yes
- B. No

88. (1 pt) local/Library/UI/Fall14/quiz2_7.pg

Given that $v_{1}=\left[\begin{array}{c}3 \\ -2\end{array}\right]$ and $v_{2}=\left[\begin{array}{c}-2 \\ 1\end{array}\right]$ are eigenvectors of the matrix $A=\left[\begin{array}{cc}24 & 36 \\ -12 & -18\end{array}\right]$, determine the corresponding eigenvalues.
a. $\lambda_{1}=$

- A. -6
- B. -5
- C. -4
- D. -3
- E. -2
- F. -1
- G. 0
- H. 1
- I. 2
- J. None of those above
b. $\lambda_{2}=$
- A. -5
- B. -4
- C. -3
- D. -2
- E. -1
- F. 0
- G. 6
- H. 1
- I. 2
- J. 3
- K. None of those above

89. (1 pt) local/Library/UI/Fall14/volume1.pg

Find the volume of the parallelepiped determined by vectors $\left[\begin{array}{r}-3 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{r}0 \\ -2 \\ 0\end{array}\right]$, and $\left[\begin{array}{r}4 \\ -3 \\ -3\end{array}\right]$

- A. 18
- B. -5
- C. -4
- D. -2
- E. -1
- F. 0
- G. 1
- H. 3
- I. 5
- J. 7
- K. None of those above

Suppose a 3×5 augmented matrix contains a pivot in every row. Then the corresponding system of equations has

- A. No solution
- B. Unique solution
- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions
- G. no solution, a unique solution, or an infinite number of solutions, depending on the system of equations
- H. none of the above

Given the following augmented matrix,

$$
A=\left[\begin{array}{rrr}
8 & 5 & -2 \\
7 & 4 & \\
0 & -7 & 3 \\
9 & 6 & \\
0 & 0 & 0 \\
0 & 1 &
\end{array}\right]
$$

the corresponding system of equations has

- A. No solution
- B. Unique solution
- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions
- G. no solution, a unique solution or an infinite number of solutions, depending on the system of equations
- H. none of the above

Given the following augmented matrix,

$$
A=\left[\begin{array}{rrr}
-9 & 3 & 0 \\
1 & -6 & \\
0 & 7 & 5 \\
-9 & -2 & \\
0 & 0 & 0 \\
7 & -4 &
\end{array}\right]
$$

the corresponding system of equations has

- A. No solution
- B. Unique solution
- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions
- G. no solution, a unique solution or an infinite number of solutions, depending on the system of equations
- H. none of the above

Suppose an augmented matrix contains a pivot in the last column. Then the corresponding system of equations has

- A. No solution
- B. Unique solution
- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions
- G. no solution, a unique solution or an infinite number of solutions, depending on the system of equations
- H. none of the above

Suppose a coefficient matrix A contains a pivot in the last column. Then $A \vec{x}=\vec{b}$ has

- A. No solution
- B. Unique solution
- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions
- G. no solution, a unique solution or an infinite number of solutions, depending on the system of equations
- H. none of the above

Suppose a coefficient matrix A contains a pivot in every row. Then $A \vec{x}=\vec{b}$ has

- A. No solution
- B. Unique solution
- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions
- G. no solution, a unique solution or an infinite number of solutions, depending on the system of equations
- H. none of the above

Suppose a coefficient matrix A contains a pivot in every column. Then $A \vec{x}=\vec{b}$ has

- A. No solution
- B. Unique solution
- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions
- G. no solution, a unique solution or an infinite number of solutions, depending on the system of equations
- H. none of the above

Suppose $A \vec{x}=\overrightarrow{0}$ has an infinite number of solutions, then given a vector \vec{b} of the appropriate dimension, $A \vec{x}=\vec{b}$ has

- A. No solution
- B. Unique solution
- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions
- G. no solution, a unique solution or an infinite number of solutions, depending on the system of equations
- H. none of the above

Suppose $A \vec{x}=\vec{b}$ has an infinite number of solutions, then $A \vec{x}=\overrightarrow{0}$ has

- A. No solution
- B. Unique solution
- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions
- G. no solution, a unique solution or an infinite number of solutions, depending on the system of equations
- H. none of the above

Suppose $A \vec{x}=\overrightarrow{0}$ has a unique solution, then given a vector \vec{b} of the appropriate dimension, $A \vec{x}=\vec{b}$ has

- A. No solution
- B. Unique solution
- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions
- G. no solution, a unique solution or an infinite number of solutions, depending on the system of equations
- H. none of the above

Suppose $A \vec{x}=\vec{b}$ has a unique solution, then $A \vec{x}=\overrightarrow{0}$ has

- A. No solution
- B. Unique solution
- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions
- G. no solution, a unique solution or an infinite number of solutions, depending on the system of equations
- H. none of the above

Suppose $A \vec{x}=\vec{b}$ has no solution, then $A \vec{x}=\overrightarrow{0}$ has

- A. No solution
- B. Unique solution
- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions
- G. no solution, a unique solution or an infinite number of solutions, depending on the system of equations
- H. none of the above

Suppose A is a square matrix and $A \vec{x}=\overrightarrow{0}$ has a unique solution, then given a vector \vec{b} of the appropriate dimension, $A \vec{x}=\vec{b}$ has

- A. No solution
- B. Unique solution
- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions
- G. no solution, a unique solution or an infinite number of solutions, depending on the system of equations
- H. none of the above

Suppose A is a square matrix and $A \vec{x}=\overrightarrow{0}$ has an infinite number of solutions, then given a vector \vec{b} of the appropriate dimension, $A \vec{x}=\vec{b}$ has

- A. No solution
- B. Unique solution
- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions
- G. no solution, a unique solution or an infinite number of solutions, depending on the system of equations
- H. none of the above

104. (1 pt) local/Library/UI/LinearSystems/spanHW4.pg

Let $A=\left[\begin{array}{rrr}-1 & 2 & 0 \\ 0 & -3 & 3 \\ -5 & 7 & 0\end{array}\right]$, and $b=\left[\begin{array}{r}6 \\ -5 \\ -1\end{array}\right]$.
Denote the columns of A by a_{1}, a_{2}, a_{3}, and let $W=$ $\operatorname{span}\left\{a_{1}, a_{2}, a_{3}\right\}$.

? 1 . Determine if b is in W
$?$ 2. Determine if b is in $\left\{a_{1}, a_{2}, a_{3}\right\}$

How many vectors are in $\left\{a_{1}, a_{2}, a_{3}\right\}$? (For infinitely many, enter -1)
How many vectors are in W ? (For infinitely many, enter -1)
105. (1 pt) local/Library/UI/MatrixAlgebra/Euclidean/2.3.43.pg

Let A be a matrix with linearly independent columns.
Select the best statement.

- A. The equation $A \mathbf{x}=\mathbf{0}$ always has nontrivial solutions.
- B. The equation $A \mathbf{x}=\mathbf{0}$ has nontrivial solutions precisely when it has more columns than rows.
- C. The equation $A \mathbf{x}=\mathbf{0}$ has nontrivial solutions precisely when it is a square matrix.
- D. There is insufficient information to determine if such an equation has nontrivial solutions.
- E. The equation $A \mathbf{x}=\mathbf{0}$ has nontrivial solutions precisely when it has more rows than columns.
- F. The equation $A \mathbf{x}=\mathbf{0}$ never has nontrivial solutions.
- G. none of the above

106. (1 pt) local/Library/UI/MatrixAlgebra/Euclidean/23.344.pg

Let A be a matrix with linearly independent columns.
Select the best statement.

- A. There is insufficient information to determine if $A \mathbf{x}=\mathbf{b}$ has a solution for all \mathbf{b}.
- B. The equation $A \mathbf{x}=\mathbf{b}$ has a solution for all \mathbf{b} precisely when it has more columns than rows.
- C. The equation $A \mathbf{x}=\mathbf{b}$ has a solution for all \mathbf{b} precisely when it is a square matrix.
- D. The equation $A \mathbf{x}=\mathbf{b}$ never has a solution for all \mathbf{b}.
- E. The equation $A \mathbf{x}=\mathbf{b}$ always has a solution for all \mathbf{b}.
- F. The equation $A \mathbf{x}=\mathbf{b}$ has a solution for all \mathbf{b} precisely when it has more rows than columns.
- G. none of the above

107. (1 pt) local/Library/UI/eigenTF.pg
A is $n \times n$ an matrices.
Check the true statements below:

- A. The vector $\mathbf{0}$ is an eigenvector of A if and only if $A x=0$ has a nonzero solution
- B. 0 is an eigenvalue of A if and only if $A x=0$ has an infinite number of solutions
- C. The vector $\mathbf{0}$ is an eigenvector of A if and only if the columns of A are linearly dependent.
- D. The eigenspace corresponding to a particular eigenvalue of A contains an infinite number of vectors.
- E. A will have at most n eigenvectors.
- F. 0 is an eigenvalue of A if and only if the columns of A are linearly dependent.
- G. 0 is an eigenvalue of A if and only if $\operatorname{det}(A)=0$
- H. 0 is an eigenvalue of A if and only if $A x=0$ has a nonzero solution
- I. The vector $\mathbf{0}$ is an eigenvector of A if and only if $\operatorname{det}(A)=0$
- J. A will have at most n eigenvalues.
- K. The vector $\mathbf{0}$ can never be an eigenvector of A
- L. 0 can never be an eigenvalue of A.
- M. There are an infinite number of eigenvectors that correspond to a particular eigenvalue of A.

108. (1 pt) local/Library/UI/problem7.pg
A and B are $n \times n$ matrices.

Adding a multiple of one row to another does not affect the determinant of a matrix.

- A. True
- B. False

If the columns of A are linearly dependent, then $\operatorname{det} A=0$.

- A. True
- B. False
$\operatorname{det}(A+B)=\operatorname{det} A+\operatorname{det} B$.
- A. True
- B. False

Suppose A is a 11×9 matrix. If rank of $A=7$, then nullity of $A=$

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

The vector \vec{b} is NOT in ColA if and only if $A \vec{v}=\vec{b}$ does NOT have a solution

- A. True
- B. False

The vector \vec{b} is in ColA if and only if $A \vec{v}=\vec{b}$ has a solution

- A. True
- B. False

Suppose $A=P D P^{-1}$ where D is a diagonal matrix. If $P=\left[\begin{array}{lll}\overrightarrow{p_{1}} & \overrightarrow{p_{2}} & \vec{p}_{3}\end{array}\right]$, then $2 \vec{p}_{1}$ is an eigenvector of A

- A. True
- B. False

Suppose $A=P D P^{-1}$ where D is a diagonal matrix. If $P=\left[\overrightarrow{p_{1}} \overrightarrow{p_{2}} \overrightarrow{p_{3}}\right]$, then $\vec{p}_{1}+\overrightarrow{p_{2}}$ is an eigenvector of A

- A. True
- B. False

Suppose $A=P D P^{-1}$ where D is a diagonal matrix. Suppose also the $d_{i i}$ are the diagonal entries of D. If $P=\left[\begin{array}{lll}\overrightarrow{p_{1}} & \overrightarrow{p_{2}} & \overrightarrow{p_{3}}\end{array}\right]$ and $d_{11}=d_{22}$, then $\overrightarrow{p_{1}}+\overrightarrow{p_{2}}$ is an eigenvector of A

- A. True
- B. False

Suppose $A=P D P^{-1}$ where D is a diagonal matrix. Suppose also the $d_{i i}$ are the diagonal entries of D . If $P=\left[\overrightarrow{p_{1}} \overrightarrow{p_{2}} \overrightarrow{p_{3}}\right]$ and $d_{22}=d_{33}$, then $\overrightarrow{p_{1}}+\overrightarrow{p_{2}}$ is an eigenvector of A

- A. True
- B. False

The vector \vec{v} is in NulA if and only if $A \vec{v}=\overrightarrow{0}$

- A. True
- B. False

If the equation $A \vec{x}=\overrightarrow{b_{1}}$ has at least one solution and if the equation $A \vec{x}=\overrightarrow{b_{2}}$ has at least one solution, then the equation $A \vec{x}=-6 \overrightarrow{b_{1}}-3 \overrightarrow{b_{2}}$ also has at least one solution.

- A. True
- B. False

Hint: (Instructor hint preview: show the student hint after 0 attempts. The current number of attempts is 0 .)
Is $\operatorname{col} A$ a subspace? Is $\operatorname{col} A$ closed under linear combinations?
If $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}$ are eigenvectors of A corresponding to eigenvalue λ_{0}, then $2 \overrightarrow{v_{1}}-5 \overrightarrow{v_{2}}$ is also an eigenvector of A corresponding to eigenvalue λ_{0} when $2 \overrightarrow{v_{1}}-5 \overrightarrow{v_{2}}$ is not $\overrightarrow{0}$.

- A. True
- B. False

Hint: (Instructor hint preview: show the student hint after 0 attempts. The current number of attempts is 0 .)
Is an eigenspace a subspace? Is an eigenspace closed under linear combinations?
Also, is $2 \overrightarrow{v_{1}}-5 \overrightarrow{v_{2}}$ nonzero?
If $\overrightarrow{x_{1}}$ and $\overrightarrow{x_{2}}$ are solutions to $A \vec{x}=\overrightarrow{0}$, then $-8 \overrightarrow{x_{1}}-9 \overrightarrow{x_{2}}$ is also a solution to $A \vec{x}=\overrightarrow{0}$.

- A. True
- B. False

Hint: (Instructor hint preview: show the student hint after 0 attempts. The current number of attempts is 0 .)
Is $N u l A$ a subspace? Is $N u l A$ closed under linear combinations?
If $\overrightarrow{x_{1}}$ and $\overrightarrow{x_{2}}$ are solutions to $A \vec{x}=\vec{b}$, then $6 \overrightarrow{x_{1}}-7 \overrightarrow{x_{2}}$ is also a solution to $A \vec{x}=\vec{b}$.

- A. True
- B. False

Hint: (Instructor hint preview: show the student hint after 0 attempts. The current number of attempts is 0 .)
Is the solution set to $A \vec{x}=\vec{b}$ a subspace even when \vec{b} is not $\overrightarrow{0}$? Is the solution set to $A \vec{x}=\vec{b}$ closed under linear combinations even when \vec{b} is not $\overrightarrow{0}$?
Find the area of the parallelogram determined by the vectors
$\left[\begin{array}{c}2.66666666666667 \\ 3\end{array}\right]$ and $\left[\begin{array}{l}3 \\ 3\end{array}\right]$.

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. 5

Use Cramer's rule to solve the following system of equations for x :

$$
\begin{array}{r}
38 x+9 y=32 \\
4 x+1 y=4
\end{array}
$$

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

Which of the following is an eigenvalue of $\left[\begin{array}{cc}-4 & 0 \\ 1 & -6\end{array}\right]$.

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

Let $A=\left[\begin{array}{ccc}2 & -4 & -5 \\ 0 & -2 & -1 \\ 0 & 0 & 2\end{array}\right]$. Is $A=$ diagonalizable?

- A. yes
- B. no
- C. none of the above

Let $A=\left[\begin{array}{ccc}6 & 0 & 12 \\ 0 & 6 & 3 \\ 0 & 0 & 6\end{array}\right]$. Is $A=$ diagonalizable?

- A. yes
- B. no
- C. none of the above

Let $A=\left[\begin{array}{cc}2 & 13 \\ 9 & -9\end{array}\right]$. Is $A=$ diagonalizable?

- A. yes
- B. no
- C. none of the above

Hint: (Instructor hint preview: show the student hint after 0 attempts. The current number of attempts is 0 .)
You do NOT need to do much work for this problem. You just need to know if the matrix A is diagonalizable. Since A is a 2 x 2 matrix, you need 2 linearly independent eigenvectors of A to form P. Does A have 2 linearly independent eigenvectors? Note you don't need to know what these eigenvectors are. You don't even need to know the eigenvalues.

$$
\begin{aligned}
\text { Let } A & =\left[\begin{array}{ccr}
-0.904761904761905 & 6.53571428571429 & -4.857142 \\
1.22751322751323 & -0.761904761904762 & 1.396825 \\
-2.222222222222 & 5 & -1.666666
\end{array}\right. \\
\text { and let } P & =\left[\begin{array}{ccc}
9 & -9 & -6 \\
4 & -8 & 8 \\
0 & -6 & -5
\end{array}\right] .
\end{aligned}
$$

Suppose $A=P D P^{-1}$. Then if $d_{i i}$ are the diagonal entries of $D, d_{11}=$,

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. 5

Hint: (Instructor hint preview: show the student hint after 0 attempts. The current number of attempts is 0.)
Use definition of eigenvalue since you know an eigenvector corresponding to eigenvalue d_{11}.

Suppose A is a 7×3 matrix. Then nul A is a subspace of R^{k} where $k=$

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

Suppose A is a 2×4 matrix. Then $\operatorname{col} A$ is a subspace of R^{k} where $k=$

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above
Calculate the dot product: $\left[\begin{array}{l}5 \\ 5 \\ 2\end{array}\right] \cdot\left[\begin{array}{c}1 \\ 3 \\ -8\end{array}\right]$
- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

Calculate the determinant of $\left[\begin{array}{cc}-2.33333333333333 & 6 \\ -4 & 9\end{array}\right]$.

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. 5

Suppose $A\left[\begin{array}{c}3 \\ 4 \\ -1\end{array}\right]=\left[\begin{array}{c}-3 \\ -4 \\ 1\end{array}\right]$. Then an eigenvalue of A is

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

Determine the length of $\left[\begin{array}{c}-1 \\ 3.87298334620742\end{array}\right]$.

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
-G. 2
- H. 3
- I. 4
- J. 5

If the characteristic polynomial of $A=(\lambda+1)^{2}(\lambda-6)(\lambda-$ $8)^{9}$, then the algebraic multiplicity of $\lambda=6$ is

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

If the characteristic polynomial of $A=(\lambda-9)^{2}(\lambda+3)(\lambda+$ $4)^{2}$, then the geometric multiplicity of $\lambda=-3$ is

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

If the characteristic polynomial of $A=(\lambda-5)^{7}(\lambda+3)^{2}(\lambda-$ $4)^{7}$, then the algebraic multiplicity of $\lambda=-3$ is

- A. 0
- B. 1
-C. 2
- D. 3
- E. 0 or 1
- F. 0 or 2
- G. 1 or 2
- H. 0,1 , or 2
- I. $0,1,2$, or 3
- J. none of the above

If the characteristic polynomial of $A=(\lambda+8)^{3}(\lambda-8)^{2}(\lambda+$ $2)^{5}$, then the geometric multiplicity of $\lambda=8$ is

- A. 0
- B. 1
-C. 2
- D. 3
- E. 0 or 1
- F. 0 or 2
- G. 1 or 2
- H. 0,1 , or 2
- I. $0,1,2$, or 3
- J. none of the above

Suppose the orthogonal projection of $\left[\begin{array}{c}-141 \\ 7 \\ -8\end{array}\right]$ onto $\left[\begin{array}{c}1 \\ -1 \\ -5\end{array}\right]$ is $\left(z_{1}, z_{2}, z_{3}\right)$. Then $z_{1}=$

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

Suppose $\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right]$ is a unit vector in the direction of
$\left[\begin{array}{c}4 \\ -2 \\ 4.94413232473044\end{array}\right]$. Then $u_{1}=$

- A. -0.8
- B. -0.6
- C. -0.4
- D. -0.2
- E. 0
- F. 0.2
- G. 0.4
- H. 0.6
- I. 0.8
- J. 1

140. (1 pt) local/Library/UI/volumn2.pg
A and B are $n \times n$ matrices.
Check the true statements below:

- A. $\operatorname{det} A^{T}=(-1) \operatorname{det} A$.
- B. If A is $3 x 3$, with columns a_{1}, a_{2}, a_{3}, then $\operatorname{det} A$ equals the volume of the parallelpiped determined by the vectors a_{1}, a_{2}, a_{3}.
- C. If A is $3 x 3$, with columns a_{1}, a_{2}, a_{3}, then the absolute value of $\operatorname{det} A$ equals the volume of the parallelpiped determined by the vectors a_{1}, a_{2}, a_{3}.

