1. ($1 \quad$ pt $)$ Library/Rochester/setLinearAlgebra11Eigenvalues/ur_la_11_18.pg
The matrix $A=\left[\begin{array}{ccc}3 & 0 & 2 \\ 0 & 1 & 0 \\ -2 & 0 & -1\end{array}\right]$
has one real eigenvalue. Find this eigenvalue and a basis of the eigenspace.
eigenvalue $=$
eigenvalue $=$
Basis: $\left[\begin{array}{l}- \\ -\end{array}\right],\left[\begin{array}{l}- \\ -\end{array}\right]$.
2. (1 pt$)$ Library/Rochester/setLinearAlgebra12Diagonalization/ur_la_12_2.pg
Let $M=\left[\begin{array}{ll}8 & -4 \\ 8 & -4\end{array}\right]$.
Find formulas for the entries of M^{n}, where n is a positive integer.
$M^{n}=\left[\begin{array}{ll}\square & \square\end{array}\right]$.
3. ($\quad\left(\begin{array}{ll}1 & \mathrm{pt}\end{array}\right)$ Library/Rochester/setLinearAlgebra14TransfOfRn/ur_la_14_18.pg
Let L be the line in \mathbb{R}^{3} that consists of all scalar multiples of the vector $\left[\begin{array}{c}-2 \\ 2 \\ 1\end{array}\right]$. Find the orthogonal projection of the vector $v=\left[\begin{array}{l}9 \\ 3 \\ 8\end{array}\right]$ onto L.
$\operatorname{proj}_{L} v=\left[\begin{array}{l}\square \\ \square\end{array}\right.$.
4. ($\mathbf{1} \mathrm{pt})$ Library/Rochester/setLinearAlgebra17DotProductRn/ur_la_17.6.pg
Find a vector v perpendicular to the vector $u=\left[\begin{array}{c}-4 \\ 2\end{array}\right]$.
$v=\left[\begin{array}{l}- \\ -\end{array}\right]$.
5. (1 pt$)$ Library/Rochester/setLinearAlgebra17DotProductRn/ur_la_17.7.pg
Find the value of k for which the vectors
$x=\left[\begin{array}{c}-4 \\ -4 \\ -5 \\ 4\end{array}\right]$ and $y=\left[\begin{array}{c}4 \\ 5 \\ -2 \\ k\end{array}\right]$ are orthogonal.
$k=$ \qquad
6. (1 pt) Library/Rochester/setLinearAlgebra17DotProductRn/ur la_1721.pg
Let $v_{1}=\left[\begin{array}{c}0.5 \\ 0.5 \\ -0.5 \\ 0.5\end{array}\right], v_{2}=\left[\begin{array}{c}0.5 \\ 0.5 \\ 0.5 \\ -0.5\end{array}\right]$, and $v_{3}=\left[\begin{array}{c}-0.5 \\ 0.5 \\ 0.5 \\ 0.5\end{array}\right]$.
Find a vector v_{4} in \mathbb{R}^{4} such that the vectors v_{1}, v_{2}, v_{3}, and v_{4} are orthonormal.
$v_{4}=\left[\begin{array}{l}- \\ - \\ -\end{array}\right]$.
7. (1 pt) Library/Rochester/setLinearAlgebra18OrthogonalBases/ur_la_18_4.pg
Let $x=\left[\begin{array}{c}-2 \\ -3 \\ 1 \\ 0\end{array}\right]$ and $y=\left[\begin{array}{c}0 \\ -3 \\ 5 \\ 4\end{array}\right]$.
Use the Gram-Schmidt process to determine an orthonormal basis for the subspace of \mathbb{R}^{4} spanned by x and y.

$$
\left[\begin{array}{l}
\bar{\square} \\
-
\end{array}\right],\left[\begin{array}{l}
\bar{Z} \\
-
\end{array}\right]
$$

8. (1 pt) Library/Rochester/setLinearAlgebra22SymmetricMatrices/ur」a_22.3.pg
Find the eigenvalues and associated unit eigenvectors of the (symmetric) matrix
$A=\left[\begin{array}{cc}4 & -12 \\ -12 & 36\end{array}\right]$.
smaller eigenvalue $=$ \qquad
associated unit eigenvector $=\left[\begin{array}{l}- \\ -\end{array}\right]$,
larger eigenvalue $=$ \qquad
associated unit eigenvector $=\left[\begin{array}{ll}- &] \\ - & \text {. }\end{array}\right.$
The above eigenvectors form an orthonormal eigenbasis for A.
9. (1 pt) Library/TCNJ/TCNJ_OrthogonalSets/problem9.pg Given $v=\left[\begin{array}{l}3 \\ 1\end{array}\right]$, find the coordinates for v in the subspace W spanned by $u_{1}=\left[\begin{array}{c}7 \\ -1\end{array}\right]$ and $u_{2}=\left[\begin{array}{c}6 \\ 42\end{array}\right]$. Note that u_{1} and u_{2} are orthogonal.

$$
v=_u_{1}+\ldots u_{2}
$$

10. (1 pt) Library/Rochester/setLinearAlgebra18OrthogonalBases/ur_la_18_7.pg
Let $A=\left[\begin{array}{cccc}-2 & 9 & 6 & 6 \\ 3 & 6 & -9 & 4\end{array}\right]$.
Find an orthonormal basis of the kernel of A.
$\left[\begin{array}{l}- \\ - \\ -\end{array}\right],\left[\begin{array}{l}- \\ - \\ -\end{array}\right]$.
11. (1 pt) Library/Rochester/setLinearAlgebra18OrthogonalBases/ur_la_18_11.pg
Let $A=\left[\begin{array}{ccc}1 & 0 & -4 \\ -2 & -4 & 4 \\ 2 & 5 & -3\end{array}\right]$.
Find an orthonormal basis of the column space of A.
$\left[\begin{array}{ll}- \\ - &]\end{array}\right],\left[\begin{array}{l}- \\ - \\ -\end{array}\right]$.
12. (1 pt) Library/Rochester/setLinearAlgebra19QRfactorization/ur_la_19_3.pg
Find the $Q R$ factorization of $M=\left[\begin{array}{ccc}4 & -4 & 4 \\ 2 & -5 & 11 \\ 4 & 2 & 4\end{array}\right]$.
$M=\left[\begin{array}{lll}\square & \square & \square \\ \square & \square & \square\end{array}\right]\left[\begin{array}{lll}\square & \square \\ \square & - & \square \\ \square & - & \square\end{array}\right]$.
13. (1 pt) Library/Rochester/setLinearAlgebra19QRfactorization-/ur_la_19-4.pg
Find the $Q R$ factorization of $M=\left[\begin{array}{cc}2 & 8 \\ -2 & 4 \\ -2 & -8 \\ -2 & 4\end{array}\right]$.
$M=\left[\begin{array}{ll}\square & \square \\ \square & \square \\ \square & \square\end{array}\right]\left[\begin{array}{ll}\square & \square \\ \square & -\end{array}\right]$.
14. (1 pt) Library/Rochester/setLinearAlgebra22SymmetricMatrices/ur_la_22_6.pg
The matrix $M=\left[\begin{array}{cccc}-3 & 0 & 1 & 0 \\ 0 & -3 & 0 & 1 \\ 1 & 0 & -3 & 0 \\ 0 & 1 & 0 & -3\end{array}\right]$.
has two distinct eigenvalues $\lambda_{1}<\lambda_{2}$. Find the eigenvalues and an orthonormal basis for each eigenspace.
$\lambda_{1}=$ \qquad
associated unit eigenvector $=\left[\begin{array}{l}- \\ - \\ -\end{array}\right],\left[\begin{array}{l}- \\ - \\ -\end{array}\right]$,
$\lambda_{2}=$ \qquad —,
associated unit eigenvector $=\left[\begin{array}{l}- \\ - \\ -\end{array}\right],\left[\begin{array}{l}- \\ - \\ - \\ -\end{array}\right]$.
The above eigenvectors form an orthonormal eigenbasis for M.
15. (1 pt) Library/Rochester/setLinearAlgebra11Eigenvalues/ur_la_112.pg
Find the characteristic polynomial $p(x)$ of the matrix

$$
A=\left[\begin{array}{ccc}
-3 & 2 & 0 \\
0 & 3 & 1 \\
-1 & 5 & 0
\end{array}\right]
$$

$p(x)=$ \qquad
16. ($\mathbf{1} \quad \mathrm{pt})$ Library/Rochester/setLinearAlgebra11Eigenvalues/ur_la_11_15.pg
The matrix $A=\left[\begin{array}{cc}8 & \mathrm{k} \\ -4 & -4\end{array}\right]$
has two distinct real eigenvalues if and only if $k<$
17. (1 pt) Library/TCNJ/TCNJ_Eigenvalues/problem13.pg

Find the eigenvalues $\lambda_{1}<\lambda_{2}<\lambda_{3}$ and corresponding eigenvectors of the matrix

$$
A=\left[\begin{array}{ccc}
-5 & 24 & 24 \\
0 & 1 & -3 \\
0 & 0 & 4
\end{array}\right]
$$

The eigenvalue $\lambda_{1}=_$corresponds to the eigenvector $\left[\begin{array}{l}- \\ -\end{array}\right]$.
The eigenvalue $\lambda_{2}=$ _ corresponds to the eigenvector $\left[\begin{array}{l}- \\ -\end{array}\right]$.
The eigenvalue $\lambda_{3}=_$corresponds to the eigenvector $\left[\begin{array}{l}- \\ -\end{array}\right]$.

18. (1 pt) UI/ur_la_11_20a.pg

The matrix $A=\left[\begin{array}{ccc}2 & 0 & -2 \\ 0 & 4 & 0 \\ 2 & 0 & 6\end{array}\right]$
has one real eigenvalue. Find this eigenvalue, its multiplicity, and the dimension of the corresponding eigenspace.
eigenvalue $=$ \qquad _,
algebraic multiplicity $=$ \qquad
dimension of the eigenspace $=$ \qquad
Is the matrix A defective? (Type "yes" or "no") \qquad
19. (1 pt) Library/TCNJ/TCNJ_Diagonalization/problem4.pg

Let: $A=\left[\begin{array}{cc}-1 & 6 \\ -9 & 14\end{array}\right]$
Find S, D and S^{-1} such that $A=S D S^{-1}$.
$S=\left[\begin{array}{ll}- & - \\ - & -\end{array}\right], D=\left[\begin{array}{cc}\overline{0} & 0 \\ 0 & -\end{array}\right], S^{-1}=\left[\begin{array}{ll}- & - \\ - & -\end{array}\right]$
20. (1 pt) Library/TCNJ/TCNJ_Diagonalization/problem5.pg

Let $A=\left[\begin{array}{ccc}6 & -3 & 12 \\ -6 & 3 & -12 \\ -3 & 3 & -9\end{array}\right]$.
Find S and D such that $A=S D S^{-1} . S=\left[\begin{array}{lll}- & - & - \\ - & - & - \\ - & - & - \\ - & -\end{array}\right]$,
$D=\left[\begin{array}{ccc}\overline{0} & 0 & 0 \\ 0 & \overline{0} & 0 \\ \hline\end{array}\right]$.
21. (1 pt) Library/Rochester/setLinearAlgebra11Eigenvalues/ur Ja_11_11.pg
Find a 2×2 matrix A such that

are eigenvectors of A, with eigenvalues 8 and -3 respectively. $A=\left[\begin{array}{ll}\square & \square\end{array}\right]$.
22. (1 pt) local/Library/UI/LinearSystems/diag.pg

Given that the matrix A has eigenvalue $\lambda_{1}=8$ with corresponding eigenvector $\left[\begin{array}{c}2 \\ -5\end{array}\right]$
and eigenvalue $\lambda_{2}=-1$ with corresponding eigenvector $\left[\begin{array}{c}-4 \\ 5\end{array}\right]$, find A.
$A=\left[\begin{array}{ll}\square & \square\end{array}\right]$.

