1. (1 pt) local/Library/UI/eigenTF.pg
A is $n \times n$ an matrices.

Check the true statements below:

- A. There are an infinite number of eigenvectors that correspond to a particular eigenvalue of A.
- B. The vector $\mathbf{0}$ is an eigenvector of A if and only if the columns of A are linearly dependent.
- C. The vector $\mathbf{0}$ can never be an eigenvector of A
- D. 0 can never be an eigenvalue of A.
- E. A will have at most n eigenvectors.
- F. The vector $\mathbf{0}$ is an eigenvector of A if and only if $A x=0$ has a nonzero solution
- G. 0 is an eigenvalue of A if and only if $A x=0$ has a nonzero solution
- H. A will have at most n eigenvalues.
- I. 0 is an eigenvalue of A if and only if $\operatorname{det}(A)=0$
- J. 0 is an eigenvalue of A if and only if $A x=0$ has an infinite number of solutions
- K. 0 is an eigenvalue of A if and only if the columns of A are linearly dependent.
- L. The eigenspace corresponding to a particular eigenvalue of A contains an infinite number of vectors.
- M. The vector $\mathbf{0}$ is an eigenvector of A if and only if $\operatorname{det}(A)=0$

2. (1 pt) UI/DIAGtfproblem1.pg
A, P and D are $n \times n$ matrices.
Check the true statements below:

- A. A is diagonalizable if A has n distinct linearly independent eigenvectors.
- B. A is diagonalizable if and only if A has n eigenvalues, counting multiplicities.
- C. If there exists a basis for \mathbb{R}^{n} consisting entirely of eigenvectors of A, then A is diagonalizable.
- D. If A is diagonalizable, then A is symmetric.
- E. A is diagonalizable if A has n distinct eigenvectors.
- F. If A is invertible, then A is diagonalizable.
- G. A is diagonalizable if $A=P D P^{-1}$ for some diagonal matrix D and some invertible matrix P.
- H. If A is orthogonally diagonalizable, then A is symmetric.
- I. If A is diagonalizable, then A is invertible.
- J. If $A P=P D$, with D diagonal, then the nonzero columns of P must be eigenvectors of A.
- K. If A is diagonalizable, then A has n distinct eigenvalues.
- L. If A is symmetric, then A is orthogonally diagonalizable.
- M. If A is symmetric, then A is diagonalizable.

3. (1 pt) UI/orthog.pg

All vectors and subspaces are in \mathbb{R}^{n}.
Check the true statements below:

- A. If $\left\{v_{1}, v_{2}, v_{3}\right\}$ is an orthonormal set, then the set $\left\{v_{1}, v_{2}, v_{3}\right\}$ is linearly independent.
- B. If x is not in a subspace W, then $x-\operatorname{proj}_{W}(x)$ is not zero.
- C. If $W=\operatorname{Span}\left\{x_{1}, x_{2}, x_{3}\right\}$ and if $\left\{v_{1}, v_{2}, v_{3}\right\}$ is an orthonormal set in W, then $\left\{v_{1}, v_{2}, v_{3}\right\}$ is an orthonormal basis for W.
- D. If A is symmetric, $A \mathbf{v}=r \mathbf{v}, A \mathbf{w}=s \mathbf{w}$ and $r \neq s$, then $\mathbf{v} \cdot \mathbf{w}=0$.
- E. If \mathbf{v} and \mathbf{w} are both eigenvectors of A and if A is symmetric, then $\mathbf{v} \cdot \mathbf{w}=0$.
- F. If $A \mathbf{v}=r \mathbf{v}$ and $A \mathbf{w}=s \mathbf{w}$ and $r \neq s$, then $\mathbf{v} \cdot \mathbf{w}=0$.
- G. In a $Q R$ factorization, say $A=Q R$ (when A has linearly independent columns), the columns of Q form an orthonormal basis for the column space of A.

Suppose $A=P D P^{-1}$ where D is a diagonal matrix. If $P=\left[\begin{array}{lll}\overrightarrow{p_{1}} & \overrightarrow{p_{2}} & \overrightarrow{p_{3}}\end{array}\right]$, then $2 \vec{p}_{1}$ is an eigenvector of A

- A. True
- B. False

Suppose $A=P D P^{-1}$ where D is a diagonal matrix. If $P=\left[\vec{p}_{1} \overrightarrow{p_{2}} \vec{p}_{3}\right]$, then $\vec{p}_{1}+\vec{p}_{2}$ is an eigenvector of A

- A. True
- B. False

Suppose $A=P D P^{-1}$ where D is a diagonal matrix. Suppose also the $d_{i i}$ are the diagonal entries of D . If $P=\left[\overrightarrow{p_{1}} \overrightarrow{p_{2}} \overrightarrow{p_{3}}\right]$ and $d_{11}=d_{22}$, then $\vec{p}_{1}+\vec{p}_{2}$ is an eigenvector of A

- A. True
- B. False

Suppose $A=P D P^{-1}$ where D is a diagonal matrix. Suppose also the $d_{i i}$ are the diagonal entries of D . If $P=\left[\begin{array}{ll}\vec{p} & \overrightarrow{p_{2}}\end{array} \vec{p}_{3}\right]$ and $d_{22}=d_{33}$, then $\overrightarrow{p_{1}}+\overrightarrow{p_{2}}$ is an eigenvector of A

- A. True
- B. False

If $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}$ are eigenvectors of A corresponding to eigenvalue λ_{0}, then $6 \overrightarrow{v_{1}}-8 \overrightarrow{v_{2}}$ is also an eigenvector of A corresponding to eigenvalue λ_{0} when $6 \overrightarrow{v_{1}}-8 \overrightarrow{v_{2}}$ is not $\overrightarrow{0}$.

- A. True
- B. False

Hint: (Instructor hint preview: show the student hint after 0 attempts. The current number of attempts is 0 .)
Is an eigenspace a subspace? Is an eigenspace closed under linear combinations?
Also, is $6 \overrightarrow{v_{1}}-8 \overrightarrow{v_{2}}$ nonzero?
Which of the following is an eigenvalue of $\left[\begin{array}{ll}4 & 4 \\ 1 & 4\end{array}\right]$.

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
-G. 2
- H. 3
- I. 4
- J. none of the above

Let $A=\left[\begin{array}{ccc}6 & 1 & -1 \\ 0 & -6 & -8 \\ 0 & 0 & 6\end{array}\right]$. Is $A=$ diagonalizable?

- A. yes
- B. no
- C. none of the above

Let $A=\left[\begin{array}{ccc}5 & -44 & -12 \\ 0 & -6 & -3 \\ 0 & 0 & 5\end{array}\right]$. Is $A=$ diagonalizable?

- A. yes
- B. no
- C. none of the above

Let $A=\left[\begin{array}{cc}7 & 11 \\ 4 & -4\end{array}\right]$. Is $A=$ diagonalizable?

- A. yes
- B. no
- C. none of the above

Hint: (Instructor hint preview: show the student hint after 0 attempts. The current number of attempts is 0 .)
You do NOT need to do much work for this problem. You just need to know if the matrix A is diagonalizable. Since A is a 2 x 2 matrix, you need 2 linearly independent eigenvectors of A to form P. Does A have 2 linearly independent eigenvectors? Note you don't need to know what these eigenvectors are. You don't even need to know the eigenvalues.

Let $A=\left[\begin{array}{ccc}0.611111111111111 & -6.77777777777778 & -4.88888888 \\ -1.27777777777778 & 1.4444444444444 & 0.277777777 \\ -3.05555555555556 & -6.11111111111111 & 4.33333333\end{array}\right.$
and let $P=\left[\begin{array}{ccc}2 & 9 & -4 \\ -1 & 2 & 1 \\ 0 & 5 & 2\end{array}\right]$.

Suppose $A=P D P^{-1}$. Then if $d_{i i}$ are the diagonal entries of $D, d_{11}=$,

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. 5

Hint: (Instructor hint preview: show the student hint after 0 attempts. The current number of attempts is 0 .)
Use definition of eigenvalue since you know an eigenvector corresponding to eigenvalue d_{11}.

Calculate the dot product: $\left[\begin{array}{c}4 \\ -2 \\ -4\end{array}\right] \cdot\left[\begin{array}{c}-4 \\ 2 \\ -5\end{array}\right]$

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

Suppose $A\left[\begin{array}{c}2 \\ 1 \\ -3\end{array}\right]=\left[\begin{array}{c}-4 \\ -2 \\ 6\end{array}\right]$. Then an eigenvalue of A is

- A. -4
- B. -3
-C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

Determine the length of $\left[\begin{array}{c}1 \\ 3.87298334620742\end{array}\right]$.

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. 5

If the characteristic polynomial of $A=(\lambda-8)^{9}(\lambda-3)(\lambda-$ $5)^{5}$, then the algebraic multiplicity of $\lambda=3$ is

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
-G. 2
- H. 3
- I. 4
- J. none of the above

If the characteristic polynomial of $A=(\lambda+2)^{4}(\lambda-7)(\lambda+$ $6)^{3}$, then the geometric multiplicity of $\lambda=7$ is

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

If the characteristic polynomial of $A=(\lambda-6)^{5}(\lambda-5)^{2}(\lambda-$ $3)^{5}$, then the algebraic multiplicity of $\lambda=5$ is

- A. 0
- B. 1
-C. 2
- D. 3
- E. 0 or 1
- F. 0 or 2
- G. 1 or 2
- H. 0,1 , or 2
- I. $0,1,2$, or 3
- J. none of the above

If the characteristic polynomial of $A=(\lambda+3)^{4}(\lambda+6)^{2}(\lambda-$ $3)^{4}$, then the geometric multiplicity of $\lambda=-6$ is

- A. 0
- B. 1
-C. 2
- D. 3
- E. 0 or 1
- F. 0 or 2
- G. 1 or 2
- H. 0,1 , or 2
- I. $0,1,2$, or 3
- J. none of the above

Suppose the orthogonal projection of $\left[\begin{array}{c}-35 \\ 5 \\ 6\end{array}\right]$ onto $\left[\begin{array}{c}1 \\ 1 \\ -4\end{array}\right]$ is $\left(z_{1}, z_{2}, z_{3}\right)$. Then $z_{1}=$

- A. -4
- B. -3
-C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
•J. none of the above
Suppose $\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right]$ is a unit vector in the direction of
$\left[\begin{array}{c}-1 \\ -5 \\ 4.81894409826699\end{array}\right]$. Then $u_{1}=$
- A. -0.8
- B. -0.6
- C. -0.4
- D. -0.2
- E. 0
- F. 0.2
- G. 0.4
- H. 0.6
- I. 0.8
- J. 1

