1. (1 pt) local/Library/UI/Fal144/quiz2_9.pg

Supppose A is an invertible $n \times n$ matrix and v is an eigenvector of A with associated eigenvalue -5 . Convince yourself that v is an eigenvector of the following matrices, and find the associated eigenvalues:

1. A^{8}, eigenvalue $=$

- A. 16
- B. 81
- C. 125
- D. 216
- E. 1024
- F. 390625
- G. 2000
- H. None of those above

2. A^{-1}, eigenvalue $=$

- A. -0.5
- B. -0.333
- C. -0.2
- D. -0.125
- E. 0
- F. 0.125
- G. 0.333
- H. 0.5
- I. None of those above

3. $A-4 I_{n}$, eigenvalue $=$

- A. -8
- B. -4
- C. -5
- D. 0
- E. 2
- F. 4
- G. -9
- H. 10
- I. None of those above

4. $8 A$, eigenvalue $=$

- A. -36
- B. -28
- C. -40
- D. -12
- E. 0
- F. 24
- G. 36
- H. None of those above

Correct Answers:

- F
- C
- G
- C

2. (1 pt) local/Library/UI/Fall14/quiz2_10.pg

If $v_{1}=\left[\begin{array}{c}5 \\ -5\end{array}\right]$ and $v_{2}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$
are eigenvectors of a matrix A corresponding to the eigenvalues
$\lambda_{1}=-2$ and $\lambda_{2}=4$, respectively, then
a. $A\left(v_{1}+v_{2}\right)=$

- A. $\left[\begin{array}{c}-3 \\ 5\end{array}\right]$
- B. $\left[\begin{array}{c}-2 \\ 4\end{array}\right]$
- C. $\left[\begin{array}{c}-6 \\ 5\end{array}\right]$
- D. $\left[\begin{array}{c}10 \\ 6\end{array}\right]$
- E. $\left[\begin{array}{c}12 \\ 4\end{array}\right]$
- F. $\left[\begin{array}{c}-6 \\ 10\end{array}\right]$
- G. None of those above
b. $A\left(-3 v_{1}\right)=$
- A. $\left[\begin{array}{l}-12 \\ -12\end{array}\right]$
- B.
- C.
- D.
- E. $\left[\begin{array}{c}30 \\ -30\end{array}\right]$
- F. $\left[\begin{array}{c}12 \\ 4\end{array}\right]$
- G. $\left[\begin{array}{c}-6 \\ 10\end{array}\right]$
- H. None of those above

Correct Answers:

- F
- E

3. (1 pt) local/Library/UI/Fall14/quiz2_11.pg

Let $v_{1}=\left[\begin{array}{c}0 \\ 2 \\ -3\end{array}\right], v_{2}=\left[\begin{array}{c}-1 \\ -1 \\ 0\end{array}\right]$, and $v_{3}=\left[\begin{array}{c}1 \\ 0 \\ -2\end{array}\right]$
be eigenvectors of the matrix A which correspond to the eigenvalues $\lambda_{1}=-3, \lambda_{2}=-1$, and $\lambda_{3}=2$, respectively, and let $v=\left[\begin{array}{c}-4 \\ 2 \\ -2\end{array}\right]$.
Express v as a linear combination of v_{1}, v_{2}, and v_{3}, and find $A v$.

1. If $v=c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}$, then $\left(c_{1}, c_{2}, c_{3}\right)=$

- A. $(1,2,2)$
- B. $(-3,2,4)$
- C. $(-4,7,3)$
- D. $(2,2,-2)$
- E. $(0,1,2)$
- F. $(4,-1,5)$
- G. None of above

2. $A v=$

- A. $\left[\begin{array}{c}-12 \\ 7 \\ -12\end{array}\right]$
- B.
$\left[\begin{array}{c}-2 \\ 12 \\ 8\end{array}\right]$
$\left[\begin{array}{c}-6 \\ 7 \\ 4\end{array}\right]$
- D.
$\left[\begin{array}{c}10 \\ 0 \\ 6\end{array}\right]$
- E. $\left[\begin{array}{c}-2 \\ -10 \\ 26\end{array}\right]$
- F. $\left[\begin{array}{c}12 \\ 8 \\ 4\end{array}\right]$
- G. $\left[\begin{array}{c}-3 \\ 12\end{array}\right]$
- H. None of those above

Suppose u and v are eigenvectors of A with eigenvalue -1 and w is an eigenvector of A with eigenvalue 0 . Determine which of the following are eigenvectors of A and their corresponding eigenvalues.
(a.) If $4 v$ an eigenvector of A, determine its eigenvalue. Else state it is not an eigenvector of A.

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. $4 v$ need not be an eigenvector of A
(b.) If $-9 u+6 v$ an eigenvector of A, determine its eigenvalue. Else state it is not an eigenvector of A.
- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. $-9 u+6 v$ need not be an eigenvector of A
(c.) If $-9 u+6 w$ an eigenvector of A, determine its eigenvalue. Else state it is not an eigenvector of A.
- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1

Correct Answers:

- G. 2
- H. 3
- I. 4
- J. $-9 u+6 w$ need not be an eigenvector of A

Correct Answers:

- D
- D
- J

