Assignment FinalExamReviewMultChoiceLongForm due 12/31/2014 at 04:54pm CST

$\begin{array}{lll} \textbf{1.} & (1 & pt) & Library/Rochester/setLinearAlgebra4InverseMatrix-/ur_Ch2_1_4.pg \end{array}$

Are the following matrices invertible? Enter "Y" or "N". You must get all of the answers correct to receive credit.

$$\begin{array}{ccccc}
 & -1 & \begin{bmatrix} -4 & 0 \\ 0 & 0 \end{bmatrix} \\
 & -2 & \begin{bmatrix} 7 & 0 \\ 0 & -6 \end{bmatrix} \\
 & -3 & \begin{bmatrix} 2 & 0 \\ -4 & 0 \end{bmatrix} \\
 & -4 & \begin{bmatrix} -2 & 4 \\ -4 & -5 \end{bmatrix}
\end{array}$$

The matrix $\begin{bmatrix} 2 & -6 \\ -5 & k \end{bmatrix}$ is invertible if and only if $k \neq$ ____.

${\bf 3.} \qquad (1 \quad pt) \quad Library/Rochester/setLinearAlgebra 9 Dependence-/ur_la_9_7.pg$

The vectors

The vectors
$$v = \begin{bmatrix} -4 \\ -9 \\ -5 \end{bmatrix}, u = \begin{bmatrix} -3 \\ -9 \\ -12 + k \end{bmatrix}, \text{ and } w = \begin{bmatrix} 3 \\ 11 \\ 8 \end{bmatrix}.$$
are linearly independent if and only if $k \neq -\infty$.

Express the vector $v = \begin{bmatrix} 14 \\ -26 \end{bmatrix}$ as a linear combination of $x = \begin{bmatrix} 4 \\ -5 \end{bmatrix}$ and $y = \begin{bmatrix} -5 \\ 2 \end{bmatrix}$.

${\bf 5.} \qquad (1 \quad pt) \quad Library/TCNJ/TCNJ_BasesLinearlyIndependentSet-/problem5.pg$

Let W_1 be the set: $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.

Determine if W_1 is a basis for \mathbb{R}^3 and check the correct answer(s) below.

- A. W_1 is not a basis because it does not span \mathbb{R}^3 .
- B. W_1 is a basis.
- C. W_1 is not a basis because it is linearly dependent.

Let
$$W_2$$
 be the set: $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$.

Determine if W_2 is a basis for \mathbb{R}^3 and check the correct answer(s) below.

- A. W₂ is not a basis because it is linearly dependent.
- B. W_2 is not a basis because it does not span \mathbb{R}^3 .
- C. W_2 is a basis.

6. (1 pt) Library/TCNJ/TCNJ_LinearIndependence/problem3.pg

If k is a real number, then the vectors (1,k),(k,k+56) are linearly independent precisely when

$$k \neq a, b$$
, where $a = \underline{\hspace{1cm}}, b = \underline{\hspace{1cm}}$, and $a < b$.

7. (1 pt) Library/TCNJ/TCNJ_LinearSystems/problem1.pg

Determine whether the following system has no solution, an infinite number of solutions or a unique solution.

$$\begin{array}{rclrcl}
 7x & -7y & = & 7 \\
 2x & -7y & = & 2 \\
 -11x & +21y & = & -11 \\
 7x & -7y & = & 7 \\
 \hline
 ?2. & 2x & -7y & = & 2 \\
 & -11x & +21y & = & -13 \\
 & 16x & +12y & = & -4 \\
 \hline
 ?3. & 12x & +9y & = & -3 \\
 & -28x & -21y & = & 7
\end{array}$$

8. (1 pt) Library/TCNJ/TCNJ_LinearSystems/problem2.pg

Determine whether the following system has no solution, an infinite number of solutions or a unique solution.

1

9. (1 pt) Library/TCNJ/TCNJ_LinearSystems/problem3.pg

Give a geometric description of the following systems of equations

$$\begin{array}{rcl}
-20x + 25y & = & -5 \\
-8x + 10y & = & -2 \\
24x - 30y & = & 6 \\
3x - 5y & = & 7 \\
\hline
?2. & 6x + 3y & = & 3 \\
-3x - 21y & = & 16 \\
3x - 5y & = & 7 \\
\hline
?3. & 6x + 3y & = & 3 \\
-3x - 21y & = & 15
\end{array}$$

10. (1 pt) Library/TCNJ/TCNJ_LinearSystems/problem4.pg

Give a geometric description of the following system of equations

11. (1 pt) Library/TCNJ/TCNJ_LinearSystems/problem11.pg

Give a geometric description of the following systems of equations.

$$\begin{array}{rcrcr}
? 1. & -6x & -6y & = 0 \\
15x & +15y & = 1 \\
? 2. & -6x & -6y & = 0 \\
15x & +15y & = 0 \\
? 3. & -3x & +9y & = 3 \\
4x & -6y & = -5
\end{array}$$

${\bf 12.}\ (1\ pt)\ Library/TCNJ/TCNJ_MatrixEquations/problem 4.pg$

Let
$$A = \begin{bmatrix} -5 & 1 & 3 \\ 3 & -3 & 2 \\ 3 & -1 & 3 \end{bmatrix}$$
 and $x = \begin{bmatrix} -4 \\ -5 \\ 1 \end{bmatrix}$.

|?|1. What does Ax mean?

13. (1 pt) Library/TCNJ/TCNJ_MatrixEquations/problem13.pg Do the following sets of vectors span \mathbb{R}^3 ?

$$\begin{array}{c}
? 3. \begin{bmatrix} -1 \\ -3 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 6 \\ -3 \end{bmatrix} \\
? 4. \begin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ -2 \\ -1 \end{bmatrix}, \begin{bmatrix} -3 \\ 6 \\ 4 \end{bmatrix}$$

14. (1 pt) Library/TCNJ/TCNJ_VectorEquations/problem5.pg

Let $H = span\{u, v\}$. For each of the following sets of vectors determine whether H is a line or a plane.

$$\begin{array}{c}
? 1. \ u = \begin{bmatrix} -1 \\ -3 \\ -2 \end{bmatrix}, v = \begin{bmatrix} 2 \\ 8 \\ 6 \end{bmatrix}, \\
? 2. \ u = \begin{bmatrix} -4 \\ -5 \\ 5 \end{bmatrix}, v = \begin{bmatrix} 15 \\ 20 \\ -22 \end{bmatrix}, \\
? 3. \ u = \begin{bmatrix} 4 \\ 2 \\ -2 \end{bmatrix}, v = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \\
? 4. \ u = \begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix}, v = \begin{bmatrix} 6 \\ -4 \\ 2 \end{bmatrix},$$

15. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4-/2.2.8.pg

Let
$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 3 \\ 6 \end{bmatrix}$.
Is \mathbf{b} in the span of of \mathbf{a}_1 ?

- A. Yes, **b** is in the span.
- B. No, **b** is not in the span.
- C. We cannot tell if **b** is in the span.

Either fill in the coefficients of the vector equation, or enter "NONE" if no solution is possible.

$$b = _{__} a_1$$

16. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4-/2.2.31.pg

$$Let A = \begin{bmatrix} 3 & 6 \\ -4 & 17 \\ -7 & 5 \end{bmatrix}.$$

We want to determine if the system $A\mathbf{x} = \mathbf{b}$ has a solution for every $\mathbf{b} \in \mathbb{R}^3$.

Select the best answer.

- A. There is not a solution for every $\mathbf{b} \in \mathbb{R}^3$ since 2 < 3.
- B. There is a solution for every $\mathbf{b} \in \mathbb{R}^3$ since 2 < 3
- C. There is a solution for every $\mathbf{b} \in \mathbb{R}^3$ but we need to row reduce A to show this.
- D. There is a not solution for every $\mathbf{b} \in \mathbb{R}^3$ but we need to row reduce A to show this.
- E. We cannot tell if there is a solution for every $\mathbf{b} \in \mathbb{R}^3$.

$17. \qquad (1\ pt)\ Library/WHFreeman/Holt_linear_algebra/Chaps_1-4-/2.2.56.pg$

What conditions on a matrix A insures that $A\mathbf{x} = \mathbf{b}$ has a solution for all \mathbf{b} in \mathbb{R}^n ?

Select the best statement. (The best condition should work with any positive integer n.)

- A. The equation will have a solution for all **b** in \mathbb{R}^n as long as no column of *A* is a scalar multiple of another column.
- B. The equation will have a solution for all b in ℝⁿ as long as the columns of A do not include the zero column.
- C. There is no easy test to determine if the equation will have a solution for all **b** in \mathbb{R}^n .
- D. The equation will have a solution for all **b** in \mathbb{R}^n as long as the columns of A span \mathbb{R}^n .
- E. none of the above

${\bf 18.} \qquad (1\ pt)\ Library/WHFreeman/Holt_linear_algebra/Chaps_1-4-/2.2.57.pg$

Assume $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ spans \mathbb{R}^3 . Select the best statement.

- A. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ spans \mathbb{R}^3 unless \mathbf{u}_4 is the zero vector.
- B. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ always spans \mathbb{R}^3 .
- C. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ spans \mathbb{R}^3 unless \mathbf{u}_4 is a scalar multiple of another vector in the set.
- D. There is no easy way to determine if {u₁, u₂, u₃, u₄} spans R³.
- E. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ never spans \mathbb{R}^3 .
- F. none of the above

19. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4-/2.2.58.pg

Assume $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ does not span \mathbb{R}^3 . Select the best statement.

- A. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ never spans \mathbb{R}^3 .
- B. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ spans \mathbb{R}^3 unless \mathbf{u}_4 is a scalar multiple of another vector in the set.
- C. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ spans \mathbb{R}^3 unless \mathbf{u}_4 is the zero vector.
- D. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ may, but does not have to, span \mathbb{R}^3 .
- E. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ always spans \mathbb{R}^3 .
- F. none of the above

${\bf 20.} \qquad (1\ \ pt)\ \ Library/WHFreeman/Holt_linear_algebra/Chaps_1-4-/2.3.40.pg$

Let **S** be a set of *m* vectors in \mathbb{R}^n with m > n.

Select the best statement.

- A. The set **S** is linearly independent.
- B. The set S is linearly independent, as long as it does not include the zero vector.
- C. The set **S** is linearly dependent.
- D. The set **S** could be either linearly dependent or linearly independent, depending on the case.
- E. The set **S** is linearly independent, as long as no vector in **S** is a scalar multiple of another vector in the set.
- F. none of the above

${\bf 21.} \qquad (1\ pt)\ Library/WHFreeman/Holt_linear_algebra/Chaps_1-4-/2.3.41.pg$

Let *A* be a matrix with more rows than columns. Select the best statement.

- A. The columns of *A* must be linearly dependent.
- B. The columns of A are linearly independent, as long as no column is a scalar multiple of another column in A
- C. The columns of A are linearly independent, as long as they does not include the zero vector.
- D. The columns of *A* could be either linearly dependent or linearly independent depending on the case.
- E. The columns of A must be linearly independent.
- F. none of the above

${\bf 22.} \qquad (1\ \ pt)\ \ Library/WHFreeman/Holt_linear_algebra/Chaps_1-4-/2.3.42.pg$

Let *A* be a matrix with more columns than rows. Select the best statement.

- A. The columns of *A* are linearly independent, as long as they does not include the zero vector.
- B. The columns of A are linearly independent, as long as no column is a scalar multiple of another column in A
- C. The columns of *A* could be either linearly dependent or linearly independent depending on the case.
- D. The columns of *A* must be linearly dependent.
- E. none of the above

${\bf 23.} \qquad (1\ \ pt)\ \ Library/WHFreeman/Holt_linear_algebra/Chaps_1-4-/2.3.46.pg$

Let $\{u_1, u_2, u_3\}$ be a linearly dependent set of vectors. Select the best statement.

• A. {**u**₁, **u**₂, **u**₃, **u**₄} is a linearly independent set of vectors unless **u**₄ is a linear combination of other vectors in the set.

- B. $\{u_1, u_2, u_3, u_4\}$ could be a linearly independent or linearly dependent set of vectors depending on the vectors chosen.
- C. $\{u_1, u_2, u_3, u_4\}$ is always a linearly independent set of vectors.
- D. {u₁, u₂, u₃, u₄} is always a linearly dependent set of vectors.
- E. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ is a linearly independent set of vectors unless $\mathbf{u}_4 = \mathbf{0}$.
- F. none of the above

${\bf 24.} \hspace{1.5cm} (1\ pt) \ Library/WHFreeman/Holt_linear_algebra/Chaps_1-4-/2.3.47.pg$

Let $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ be a linearly independent set of vectors. Select the best statement.

- A. $\{u_1, u_2, u_3\}$ could be a linearly independent or linearly dependent set of vectors depending on the vectors chosen.
- B. {u₁, u₂, u₃} is never a linearly independent set of vectors.
- C. {u₁, u₂, u₃} is always a linearly independent set of vectors.
- D. none of the above

${\bf 25.} \qquad (1\ \ pt)\ \ Library/WHFreeman/Holt_linear_algebra/Chaps_1-4-/3.3.42.pg$

A must be a square matrix to be invertible. ?

${\bf 26.} \qquad (1\ \ pt)\ \ Library/WHFreeman/Holt_linear_algebra/Chaps_1-4-/4.1.22.pg$

Find the null space for $A = \begin{bmatrix} 1 & 2 \\ 3 & 8 \end{bmatrix}$. What is null(A)?

- A. span $\left\{ \begin{bmatrix} 1\\3 \end{bmatrix} \right\}$ • B. span $\left\{ \begin{bmatrix} -2\\1 \end{bmatrix} \right\}$
- C. ℝ²
- D. $\left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$
- E. span $\left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}$
- F. span $\left\{ \begin{bmatrix} -3\\1 \end{bmatrix} \right\}$
- G. span $\left\{ \begin{bmatrix} 3 \\ 1 \end{bmatrix} \right\}$
- H. none of the above

${\bf 27.} \qquad (1\ \ pt)\ \ Library/WHFreeman/Holt_linear_algebra/Chaps_1-4-/4.1.27.pg$

Find the null space for $A = \begin{bmatrix} 3 & -4 \\ 2 & 2 \\ 1 & -7 \end{bmatrix}$.

What is null(A)?

- A. \mathbb{R}^2 • B. span $\left\{ \begin{bmatrix} 3 \\ -4 \end{bmatrix} \right\}$
- C. span $\left\{ \begin{bmatrix} +4\\3 \end{bmatrix} \right\}$
- D. $\left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$
- E. span $\left\{ \begin{bmatrix} 3\\2\\1 \end{bmatrix} \right\}$
- F. \mathbb{R}^3
- G. span $\left\{ \begin{bmatrix} -4\\3 \end{bmatrix} \right\}$
- H. span $\left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right\}$
- I. none of the above

${\bf 28.} \qquad (1\ pt)\ Library/WHFreeman/Holt_linear_algebra/Chaps_1-4-/4.1.28.pg$

Find the null space for $A = \begin{bmatrix} 1 & -2 \\ 4 & -8 \\ -7 & 14 \end{bmatrix}$.

What is null(A)?

- A. span $\left\{ \begin{bmatrix} 1\\4\\-7 \end{bmatrix} \right\}$
- B. \mathbb{R}^2
- C. span $\left\{ \begin{bmatrix} +2\\1 \end{bmatrix} \right\}$
- D. span $\left\{ \begin{bmatrix} 0\\0\\0 \end{bmatrix} \right\}$
- E. span $\left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$
- F. span $\left\{ \begin{bmatrix} 14\\-7 \end{bmatrix} \right\}$
- G. ℝ
- H. none of the above

29. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4-/4.1.30.pg

Find the null space for
$$A = \begin{bmatrix} 3 & -1 & 3 \\ -6 & -3 & -21 \\ 2 & 2 & 10 \end{bmatrix}$$
.

What is null(A)?

• A. span
$$\left\{ \begin{bmatrix} 3 \\ -1 \\ 3 \end{bmatrix}, \begin{bmatrix} -6 \\ -3 \\ -21 \end{bmatrix} \right\}$$

• B.
$$\mathbb{R}^3$$

• C. span
$$\left\{ \begin{bmatrix} 3 \\ -1 \\ 3 \end{bmatrix} \right\}$$

• D. span
$$\left\{ \begin{bmatrix} -2 \\ -3 \\ 1 \end{bmatrix} \right\}$$

• E. span
$$\left\{ \begin{bmatrix} 3 \\ -6 \\ 2 \end{bmatrix} \right\}$$

• F. span
$$\left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right\}$$

• G. none of the above

30. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4-/4.3.47.pg

Indicate whether the following statement is true or false.

? 1. If A and B are equivalent matrices, then col(A) = col(B).

31. (1 pt) Library/maCalcDB/setLinearAlgebra3Matrices/ur_la_3_6.pg

If A and B are 3×6 matrices, and C is a 7×3 matrix, which of the following are defined?

- A. BC
- B. BA^T
- C. C^T
- D. *CA*
- E. B+A
- F. A + C

${\bf 32.} \qquad (1\ pt)\ Library/maCalcDB/setLinearAlgebra4InverseMatrix-/ur_la_4_8.pg$

Determine which of the formulas hold for all invertible $n \times n$ matrices A and B

- A. A + B is invertible
- B. $(AB)^{-1} = A^{-1}B^{-1}$
- C. AB = BA

- D. $(A+B)^2 = A^2 + B^2 + 2AB$
- E. A^6 is invertible
- F. $(I_n + A)(I_n + A^{-1}) = 2I_n + A + A^{-1}$

33. (1 pt) UI/Fall14/lin_span2.pg

Which of the following sets of vectors span \mathbb{R}^3 ?

• A.
$$\begin{bmatrix} -3 \\ -8 \\ -4 \end{bmatrix}$$
, $\begin{bmatrix} 0 \\ 5 \\ -6 \end{bmatrix}$, $\begin{bmatrix} 7 \\ 2 \\ 9 \end{bmatrix}$

• C.
$$\begin{bmatrix} -5 \\ 4 \\ 8 \end{bmatrix}$$
, $\begin{bmatrix} 7 \\ 5 \\ -9 \end{bmatrix}$, $\begin{bmatrix} -12 \\ -1 \\ 17 \end{bmatrix}$

• D.
$$\begin{vmatrix} 8 \\ -4 \end{vmatrix}$$
, $\begin{vmatrix} 4 \\ -2 \end{vmatrix}$

• E.
$$\begin{bmatrix} 8 \\ 7 \end{bmatrix}$$
, $\begin{bmatrix} 5 \\ -9 \end{bmatrix}$, $\begin{bmatrix} -4 \\ 2 \end{bmatrix}$

• F.
$$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} -5 \\ 9 \end{bmatrix}$

Which of the following sets of vectors are linearly independent?

• A.
$$\begin{bmatrix} -3 \\ -8 \\ -4 \end{bmatrix}$$
, $\begin{bmatrix} 0 \\ 5 \\ -6 \end{bmatrix}$, $\begin{bmatrix} 7 \\ 2 \\ 9 \end{bmatrix}$

• C.
$$\begin{vmatrix} -5 \\ 4 \\ 8 \end{vmatrix}$$
, $\begin{vmatrix} 7 \\ 5 \\ -9 \end{vmatrix}$, $\begin{vmatrix} -12 \\ -1 \\ 17 \end{vmatrix}$

• D.
$$\begin{vmatrix} 8 \\ -4 \end{vmatrix}$$
, $\begin{vmatrix} 4 \\ -2 \end{vmatrix}$

• E.
$$\begin{bmatrix} 8 \\ 7 \end{bmatrix}$$
, $\begin{bmatrix} 5 \\ -9 \end{bmatrix}$, $\begin{bmatrix} -4 \\ 2 \end{bmatrix}$

• F.
$$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} -5 \\ 9 \end{bmatrix}$

34. (1 pt) UI/Fall14/lin_span.pg

Let
$$A = \begin{bmatrix} 14 \\ 3 \\ 32 \end{bmatrix}$$
, $B = \begin{bmatrix} -2 \\ 1 \\ -6 \end{bmatrix}$, and $C = \begin{bmatrix} -2 \\ -1 \\ -4 \end{bmatrix}$

Which of the following best describes the span of the above 3 vectors?

- A. 0-dimensional point in \mathbb{R}^3
- B. 1-dimensional line in \mathbb{R}^3
- C. 2-dimensional plane in \mathbb{R}^3
- D. R³

Determine whether or not the three vectors listed above are linearly independent or linearly dependent.

- A. linearly dependent
- B. linearly independent

If they are linearly dependent, determine a non-trivial linear relation. Otherwise, if the vectors are linearly independent, enter 0's for the coefficients, since that relationship **always** holds.

$$A + B + C = 0.$$

35. (1 pt) local/Library/Rochester/setLinearAlgebra3Matrices-/ur_la_3_14.pg

Find the ranks of the following matrices.

$$rank \left[\begin{array}{cccc} 0 & 6 & 0 & 0 \\ 0 & 0 & -5 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 4 \end{array} \right] = \underline{\hspace{1cm}}$$

36. (1 pt) local/Library/TCNJ/TCNJ_BasesLinearlyIndependentSet-/3.pg

Check the true statements below:

- A. If B is an echelon form of a matrix A, then the pivot columns of B form a basis for ColA.
- B. A basis is a spanning set that is as large as possible.
- C. The column space of a matrix A is the set of solutions of Ax = b.
- D. The columns of an invertible $n \times n$ matrix form a basis for \mathbb{R}^n .
- E. If $H = Span\{b_1, ..., b_p\}$, then $\{b_1, ..., b_p\}$ is a basis

37. (1 pt) local/Library/TCNJ/TCNJ_LinearSystems/problem6.pg Give a geometric description of the following systems of equations

Hint: (Instructor hint preview: show the student hint after 1 attempts. The current number of attempts is 0.)

Reduce the augmented matrix and solve for it. If it has unique solutions, three planes intersect at a point; no solutions indicates no common intersection; one free variable shows intersection on a line; two free variables means identical planes.

38. (1 pt) local/Library/UI/2.3.49.pg

Let \mathbf{u}_4 be a linear combination of $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$. Select the best statement.

- A. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ is always a linearly independent set of vectors.
- B. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is never a linearly dependent set of vec-
- C. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ is never a linearly independent set of
- D. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ could be a linearly dependent or linearly independent set of vectors depending on the vectors chosen.
- E. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is a linearly dependent set of vectors.
- F. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is a linearly dependent set of vectors unless one of $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is the zero vector.
- G. none of the above

39. (1 pt) local/Library/UI/4.1.23.pg

Find the null space for $A = \begin{bmatrix} 1 & 0 & -6 \\ 0 & 1 & 3 \end{bmatrix}$. What is null(A)?

• A.
$$\mathbb{R}^3$$

• B. span $\left\{ \begin{bmatrix} 1\\0\\+6 \end{bmatrix}, \begin{bmatrix} 0\\1\\-3 \end{bmatrix} \right\}$
• C. span $\left\{ \begin{bmatrix} -3\\+6 \end{bmatrix} \right\}$

• D.
$$\mathbb{R}^2$$

• E. span $\left\{ \begin{bmatrix} +6 \\ -3 \\ 1 \end{bmatrix} \right\}$
• F. span $\left\{ \begin{bmatrix} +6 \\ -3 \end{bmatrix} \right\}$
• G. span $\left\{ \begin{bmatrix} -3 \\ +6 \end{bmatrix} \right\}$

H. none of the above

40. (1 pt) local/Library/UI/Fall14/HW7_4.pg

Determine if the subset of \mathbb{R}^2 consisting of vectors of the form $\begin{bmatrix} a \\ b \end{bmatrix}$, where a and b are integers, is a subspace.

Select true or false for each statement.

The set contains the zero vector

- A. True
- B. False

This set is closed under vector addition

- A. True
- B. False

This set is closed under scalar multiplications

- A. True
- B. False

This set is a subspace

- A. True
- B. False

41. (1 pt) local/Library/UI/Fall14/HW7_5.pg

Determine if the subset of \mathbb{R}^3 consisting of vectors of the

form
$$\begin{bmatrix} a \\ b \\ c \end{bmatrix}$$
, where $a \ge 0$, $b \ge 0$, and $c \ge 0$ is a subspace.

Select true or false for each statement.

The set contains the zero vector

- A. True
- B. False

This set is closed under vector addition

- A. True
- B. False

This set is closed under scalar multiplications

- A. True
- B. False

This set is a subspace

- A. True
- B. False

42. (1 pt) local/Library/UI/Fall14/HW7_6.pg

If *A* is an $n \times n$ matrix and $\mathbf{b} \neq 0$ in \mathbb{R}^n , then consider the set of solutions to $A\mathbf{x} = \mathbf{b}$.

Select true or false for each statement.

The set contains the zero vector

- A. True
- B. False

This set is closed under vector addition

- A. True
- B. False

This set is closed under scalar multiplications

- A. True
- B. False

This set is a subspace

- A. True
- B. False

43. (1 pt) local/Library/UI/Fall14/HW7_11.pg

Find all values of x for which rank(A) = 2.

$$A = \begin{bmatrix} 2 & 2 & 0 & 5 \\ 4 & 7 & x & 19 \\ -6 & -9 & -3 & -24 \end{bmatrix}$$

- A. -4
 - B. -3
 - C. -2
 - D. -1
 - E. 0
 - F. 1
 - G. 2
 - H. 3
 - I. 4
 - J. none of the above

44. (1 pt) local/Library/UI/Fall14/HW7_12.pg

Suppose that A is a 5×6 matrix which has a null space of dimension 6. The rank of A=

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

45. (1 pt) local/Library/UI/Fall14/HW7_25.pg

Indicate whether the following statement is true or false? If $S = \text{span}u_1, u_2, u_3$, then dim(S) = 3.

- A. True
- B. False

46. (1 pt) local/Library/UI/Fall14/HW7_27.pg

Determine the rank and nullity of the matrix.

The rank of the matrix is

- A. -4
- B. -3
- C. -2
- D. -1

- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

The nullity of the matrix is

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

47. (1 pt) local/Library/UI/Fall14/HW8_2.pg

Evaluate the following 3×3 determinant. Use the properties of determinants to your advantage.

$$\begin{vmatrix} -8 & 0 & -4 \\ -1 & 0 & 10 \\ -4 & 0 & 3 \end{vmatrix}$$

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

Does the matrix have an inverse?

- A. No
- B. Yes

48. (1 pt) local/Library/UI/Fall14/HW8_3.pg

0 -2 3Given the matrix

- (a) find its determinant
 - A. 6
 - B. -5
 - C. -4

- D. -2
- E. -1
- F. 0
- G. 1
- H. 3
- I. 5
- J. 7
- K. None of those above
- (b) Does the matrix have an inverse?
 - A. No
 - B. Yes

49. (1 pt) local/Library/UI/Fall14/HW8_4.pg

If A and B are 4×4 matrices, det(A) = 1, det(B) = 2, then det(AB) =

- A. -15
- B. 2
- C. -11
- D. -8
- E. -5
- F. 0 • G. 3
- H. 6
- I. 8
- J. 12
- K. None of those above

$$\det(-3A) =$$

- A. -40
- B. 81
- C. -28
- D. -21
- E. -10 • F. -1
- G. 10
- H. 21 • I. 28
- J. 36
- K. 40
- L. None of those above

$$\det(A^T) =$$

- A. -3
- B. -2
- C. -1
- D. 0

- E. 1
- F. 2
- G. 3
- H. 4
- I. None of those above

 $\det(B^{-1}) =$

- A. -0.4
- B. -0.5
- C. 0
- D. 0.4
- E. 0.5
- F. 1
- G. None of those above

 $det(B^4) =$

- A. -81
- B. -36
- C. -12
- D. 0
- E. 12
- F. 36
- G. 81
- H. 16
- I. 1024
- J. None of those above

50. (1 pt) local/Library/UI/Fall14/HW8_5.pg

Find the determinant of the matrix

$$A = \begin{bmatrix} -6 & 0 & 0 & 0 \\ -1 & 2 & 0 & 0 \\ -8 & 1 & 3 & 0 \\ -6 & -3 & 1 & 3 \end{bmatrix}$$

$$\det(A) = \begin{bmatrix} -6 & 0 & 0 & 0 \\ -1 & 2 & 0 & 0 \\ -6 & -3 & 1 & 3 \end{bmatrix}$$

- - A. -400B. -360
 - C. -288
 - D. -120
 - E. 0
 - F. 120
 - G. -108
 - H. 240
 - I. 360
 - J. 400
 - K. None of those above

51. (1 pt) local/Library/UI/Fall14/HW8_7.pg

Suppose that a 4×4 matrix A with rows v_1 , v_2 , v_3 , and v_4 has determinant $\det A = -4$. Find the following determinants:

$$B = \begin{bmatrix} v_1 \\ 9v_2 \\ v_3 \\ v_4 \end{bmatrix} \det(B) =$$

- A. -18
- B. -15
- C. -12
- D. -36
- E. -9
- F. 0
- G. 9
- H. 12I. 15
- J. 18
- K. None of those above

$$C = \begin{bmatrix} v_2 \\ v_1 \\ v_4 \\ v_3 \end{bmatrix} \det(C) =$$

- A. -18
- B. -4
- C. -9
- D. -3
- E. 0
- F. 3
- G. 9 • H. 12
- I. 18
- J. None of those above

$$D = \begin{bmatrix} v_1 + 3v_3 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix}$$
$$\det(D) =$$

- A. -18
- B. -4
- C. -9
- D. -3
- E. 0
- F. 3
- G. 9
- H. 12
- I. 18
- J. None of those above

52. (1 pt) local/Library/UI/Fall14/HW8_8.pg

Use determinants to determine whether each of the following sets of vectors is linearly dependent or independent.

$$\left[\begin{array}{c} -9 \\ 6 \end{array}\right], \left[\begin{array}{c} 4 \\ -5 \end{array}\right],$$

- A. Linearly Dependent
- B. Linearly Independent

$$\begin{bmatrix} 1 \\ 5 \\ 1 \end{bmatrix}, \begin{bmatrix} -3 \\ -18 \\ -1 \end{bmatrix}, \begin{bmatrix} 7 \\ 44 \\ -1 \end{bmatrix},$$

- A. Linearly Dependent
- B. Linearly Independent

$$\left[\begin{array}{c} -5 \\ -10 \end{array}\right], \left[\begin{array}{c} 3 \\ 6 \end{array}\right],$$

- A. Linearly Dependent
- B. Linearly Independent

$$\left[\begin{array}{c}2\\4\\4\end{array}\right],\left[\begin{array}{c}-4\\-8\\-8\end{array}\right],\left[\begin{array}{c}10\\20\\20\end{array}\right],$$

- A. Linearly Dependent
- B. Linearly Independent

53. (1 pt) local/Library/UI/Fall14/HW8_10.pg

$$A = \left[\begin{array}{rrrr} -8 & 6 & 0 & 3 \\ -4 & -2 & 0 & 0 \\ 0 & -7 & 0 & 0 \\ 8 & -2 & -4 & 8 \end{array} \right]$$

The determinant of the matrix is

- A. -1890
- B. -1024
- C. -630
- D. 336
- E. -210
- F. 0
- G. 324
- H. 630
- I. 1024
- J. None of those above

Hint: Find a good row or column and expand by minors.

54. (1 pt) local/Library/UI/Fall14/HW8_11.pg

Find the determinant of the matrix

$$M = \begin{bmatrix} -3 & 0 & 0 & -2 & 0 \\ -3 & 0 & 3 & 0 & 0 \\ 0 & -3 & 0 & 0 & -2 \\ 0 & 0 & 0 & -3 & 2 \\ 0 & -2 & -2 & 0 & 0 \end{bmatrix}.$$

$$\det(M) =$$

- A. -48
- B. -35
- C. -20
- D. 180
- E. -5
- F. 5
- G. 18
- H. 20
- I. 81
- J. None of those above

55. (1 pt) local/Library/UI/Fall14/HW8_12.pg

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \end{bmatrix}$$

And now for the grand finale: The determinant of the matrix is

- A. -362880
- B. -5
- C. 0
- D. 5
- E. 20
- F. 30
- G. 40
- H. 362880
- I. None of the above

Hint: Remember that a square linear system has a unique solution if the determinant of the coefficient matrix is non-zero.

A system of equations can have exactly 2 solution.

- A. True
- B. False

A system of linear equations can have exactly 2 solution.

- A. True
- B. False

A system of linear equations has no solution if and only if the last column of its augmented matrix corresponds to a pivot column.

- A. True
- B. False

A system of linear equations has an infinite number of solutions if and only if its associated augmented matrix has a column corresponding to a free variable.

- A. True
- B. False

If a system of linear equations has an infinite number of solutions, then its associated augmented matrix has a column corresponding to a free variable.

- A. True
- B. False

If a linear system has four equations and seven variables, then it must have infinitely many solutions.

- A. True
- B. False

Every linear system with free variables has infinitely many solutions.

- A. True
- B. False

Any linear system with more variables than equations cannot have a unique solution.

- A. True
- B. False

If a linear system has the same number of equations and variables, then it must have a unique solution.

- A. True
- B. False

A vector b is a linear combination of the columns of a matrix A if and only if the equation Ax = b has at least one solution.

- A. True
- B. False

If the columns of an $m \times n$ matrix, A span \mathbb{R}^m , then the equation, Ax = b is consistent for each b in \mathbb{R}^m .

- A. True
- B. False

If A is an $m \times n$ matrix and if the equation Ax = b is inconsistent for some b in \mathbb{R}^m , then A cannot have a pivot position in every row.

- A. True
- B. False

Any linear combination of vectors can always be written in the form Ax for a suitable matrix A and vector x.

- A. True
- B. False

If the equation Ax = b is inconsistent, then b is not in the set spanned by the columns of A.

- A. True
- B. False

If A is an $m \times n$ matrix whose columns do not span \mathbb{R}^m , then the equation Ax = b is inconsistent for some b in \mathbb{R}^m .

- A. True
- B. False

Every linear system with free variables has infinitely many solutions.

- A. True
- B. False

72. (1 pt) local/Library/UI/Fall14/quiz2_2.pg

Find the area of the triangle with vertices (1, -2), (8, -5), and (3, 2).

Area =

- A. 2
- B. 5
- C. 6
- D. 8
- E. 9
- F. 12
- G. 17
- H. 20
- I. 25
- J. None of those above

Hint: The area of a triangle is half the area of a parallelogram. Find the vectors that determine the parallelogram of interest. If you have difficulty, visualizing the problem may be helpful: plot the 3 points.

73. (1 pt) local/Library/UI/Fall14/quiz2_6.pg

Determine if v is an eigenvector of the matrix A.

$$1. A = \begin{bmatrix} 8 & -4 & 15 \\ -7 & 5 & -15 \\ -6 & 4 & -13 \end{bmatrix}, v = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$$

- A. Yes
- B. No

$$2. A = \begin{bmatrix} 4 & 0 & 0 \\ 0 & -2 & 0 \\ 5 & -1 & -1 \end{bmatrix}, v = \begin{bmatrix} 6 \\ 6 \\ -1 \end{bmatrix}$$

- A. Yes
- B. No

$$3. A = \begin{bmatrix} -8 & -4 & -1 \\ 13 & 3 & -5 \\ -10 & -4 & 1 \end{bmatrix}, v = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$

- A. Yes
- B. No

$$4. A = \begin{bmatrix} 6 & 5 & -16 \\ 6 & 5 & -16 \\ 3 & 5 & -13 \end{bmatrix}, v = \begin{bmatrix} 7 \\ 9 \\ 1 \end{bmatrix}$$

- A. Yes
- B. No

74. (1 pt) local/Library/UI/Fall14/quiz2_7.pg

Given that $v_1 = \begin{bmatrix} -3 \\ -1 \end{bmatrix}$ and $v_2 = \begin{bmatrix} 8 \\ 3 \end{bmatrix}$ are eigenvectors of the matrix $A = \begin{bmatrix} 62 & -168 \\ 21 & -57 \end{bmatrix}$, determine the corresponding eigenvalues. a. $\lambda_1 =$

- A. -6
- B. -5
- C. -4
- D. -3
- E. -2
- F. -1
- G. 6
- H. 0
- I. 1
- J. 2
- K. None of those above

b.
$$\lambda_2 =$$

- A. -5
- B. -4
- C. -3
- D. -2
- E. 0
- F. -1
- G. 1
- H. 2
- I. 3
- J. None of those above

75. (1 pt) local/Library/UI/Fall14/volume1.pg

Find the volume of the parallelepiped determined by vectors

$$\begin{bmatrix} 4 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ -4 \\ 0 \end{bmatrix}, \text{ and } \begin{bmatrix} -2 \\ -2 \\ -5 \end{bmatrix}$$

- A. 72
- B. -5
- C. -4
- D. -2
- E. -1
- F. 0
- G. 1
- H. 3
- I. 5
- J. 7
- K. None of those above

Suppose a 3 x 5 augmented matrix contains a pivot in every row. Then the corresponding system of equations has

- A. No solution
- B. Unique solution
- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions
- G. no solution, a unique solution, or an infinite number of solutions, depending on the system of equations
- H. none of the above

Given the following augmented matrix,

$$A = \left[\begin{array}{ccccc} 2 & 0 & 3 & -2 & 4 \\ 0 & -5 & 4 & -6 & 4 \\ 0 & 0 & 0 & 0 & 5 \end{array} \right],$$

the corresponding system of equations has

- A. No solution
- B. Unique solution
- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions
- G. no solution, a unique solution or an infinite number of solutions, depending on the system of equations
- H. none of the above

Given the following augmented matrix,

$$A = \left[\begin{array}{rrrrr} -1 & -3 & 3 & -3 & 7 \\ 0 & -3 & 3 & 3 & 2 \\ 0 & 0 & 0 & -2 & -8 \end{array} \right],$$

the corresponding system of equations has

• A. No solution

- B. Unique solution
- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions
- G. no solution, a unique solution or an infinite number of solutions, depending on the system of equations
- H. none of the above

Suppose an augmented matrix contains a pivot in the last column. Then the corresponding system of equations has

- A. No solution
- B. Unique solution
- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions
- G. no solution, a unique solution or an infinite number of solutions, depending on the system of equations
- H. none of the above

Suppose a coefficient matrix A contains a pivot in the last column. Then $A\vec{x} = \vec{b}$ has

- A. No solution
- B. Unique solution
- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions
- G. no solution, a unique solution or an infinite number of solutions, depending on the system of equations
- H. none of the above

Suppose a coefficient matrix A contains a pivot in every row. Then $A\vec{x} = \vec{b}$ has

- A. No solution
- B. Unique solution
- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions
- G. no solution, a unique solution or an infinite number of solutions, depending on the system of equations
- H. none of the above

Suppose a coefficient matrix *A* contains a pivot in every column. Then $A\vec{x} = \vec{b}$ has

- A. No solution
- B. Unique solution
- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions
- G. no solution, a unique solution or an infinite number of solutions, depending on the system of equations
- H. none of the above

Suppose $A\vec{x} = \vec{0}$ has an infinite number of solutions, then given a vector \vec{b} of the appropriate dimension, $A\vec{x} = \vec{b}$ has

- A. No solution
- B. Unique solution
- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions
- G. no solution, a unique solution or an infinite number of solutions, depending on the system of equations
- H. none of the above

Suppose $A\vec{x} = \vec{b}$ has an infinite number of solutions, then $A\vec{x} = \vec{0}$ has

- A. No solution
- B. Unique solution
- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions
- G. no solution, a unique solution or an infinite number of solutions, depending on the system of equations
- H. none of the above

Suppose $A\vec{x} = \vec{0}$ has a unique solution, then given a vector \vec{b} of the appropriate dimension, $A\vec{x} = \vec{b}$ has

- A. No solution
- B. Unique solution
- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions
- G. no solution, a unique solution or an infinite number of solutions, depending on the system of equations

• H. none of the above

Suppose $A\vec{x} = \vec{b}$ has a unique solution, then $A\vec{x} = \vec{0}$ has

- A. No solution
- B. Unique solution
- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions
- G. no solution, a unique solution or an infinite number of solutions, depending on the system of equations
- H. none of the above

Suppose $A\vec{x} = \vec{b}$ has no solution, then $A\vec{x} = \vec{0}$ has

- A. No solution
- B. Unique solution
- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions
- G. no solution, a unique solution or an infinite number of solutions, depending on the system of equations
- H. none of the above

Suppose A is a square matrix and $A\vec{x}=\vec{0}$ has a unique solution, then given a vector \vec{b} of the appropriate dimension, $A\vec{x}=\vec{b}$ has

- A. No solution
- B. Unique solution
- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions
- G. no solution, a unique solution or an infinite number of solutions, depending on the system of equations
- H. none of the above

Suppose A is a square matrix and $A\vec{x} = \vec{0}$ has an infinite number of solutions, then given a vector \vec{b} of the appropriate dimension, $A\vec{x} = \vec{b}$ has

- A. No solution
- B. Unique solution
- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions

- G. no solution, a unique solution or an infinite number of solutions, depending on the system of equations
- H. none of the above

90. (1 pt) local/Library/UI/LinearSystems/spanHW4.pg

Let
$$A = \begin{bmatrix} -5 & 5 & 0 \\ 5 & -7 & 4 \\ -3 & 5 & -3 \end{bmatrix}$$
, and $b = \begin{bmatrix} -2 \\ 2 \\ -3 \end{bmatrix}$.

Denote the columns of A by a_1 , a_2 , a_3 , and let $W = span\{a_1, a_2, a_3\}$.

- ? 1. Determine if b is in $\{a_1, a_2, a_3\}$
- ? 2. Determine if *b* is in *W*

How many vectors are in $\{a_1, a_2, a_3\}$? (For infinitely many, enter -1) _____

How many vectors are in W? (For infinitely many, enter -1)

$\bf 91.\ (1\ pt)\ local/Library/UI/MatrixAlgebra/Euclidean/2.3.43.pg$

Let *A* be a matrix with linearly independent columns. Select the best statement.

- A. The equation $A\mathbf{x} = \mathbf{0}$ has nontrivial solutions precisely when it has more rows than columns.
- B. The equation $A\mathbf{x} = \mathbf{0}$ has nontrivial solutions precisely when it has more columns than rows.
- C. The equation $A\mathbf{x} = \mathbf{0}$ has nontrivial solutions precisely when it is a square matrix.
- D. The equation $A\mathbf{x} = \mathbf{0}$ always has nontrivial solutions.
- E. There is insufficient information to determine if such an equation has nontrivial solutions.
- F. The equation $A\mathbf{x} = \mathbf{0}$ never has nontrivial solutions.
- G. none of the above

92. (1 pt) local/Library/UI/MatrixAlgebra/Euclidean/2.3.44.pg

Let *A* be a matrix with linearly independent columns. Select the best statement.

- A. The equation $A\mathbf{x} = \mathbf{b}$ has a solution for all \mathbf{b} precisely when it has more rows than columns.
- B. The equation $A\mathbf{x} = \mathbf{b}$ has a solution for all \mathbf{b} precisely when it has more columns than rows.
- C. There is insufficient information to determine if $A\mathbf{x} = \mathbf{b}$ has a solution for all \mathbf{b} .
- D. The equation $A\mathbf{x} = \mathbf{b}$ has a solution for all \mathbf{b} precisely when it is a square matrix.
- E. The equation $A\mathbf{x} = \mathbf{b}$ never has a solution for all \mathbf{b} .
- F. The equation $A\mathbf{x} = \mathbf{b}$ always has a solution for all \mathbf{b} .
- G. none of the above

93. (1 pt) local/Library/UI/problem7.pg

A and B are $n \times n$ matrices.

Adding a multiple of one row to another does not affect the determinant of a matrix.

- A. True
- B. False

If the columns of A are linearly dependent, then det A = 0.

- A. True
- B. False

$$det(A+B) = detA + detB$$
.

- A. True
- B. False

Suppose A is a 8 \times 6 matrix. If rank of A = 2, then nullity of A = 2

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3I. 4
- J. none of the above

The vector \vec{b} is NOT in ColA if and only if $A\vec{v} = \vec{b}$ does NOT have a solution

- A. True
- B. False

The vector \vec{b} is in *ColA* if and only if $A\vec{v} = \vec{b}$ has a solution

- A. True
- B. False

The vector \vec{v} is in *NulA* if and only if $A\vec{v} = \vec{0}$

• A. True

• B. False

If the equation $A\vec{x} = \vec{b_1}$ has at least one solution and if the equation $A\vec{x} = \vec{b_2}$ has at least one solution, then the equation $A\vec{x} = 8\vec{b_1} - 7\vec{b_2}$ also has at least one solution.

• A. True

• B. False

Hint: (Instructor hint preview: show the student hint after 0 attempts. The current number of attempts is 0.) Is *colA* a subspace? Is *colA* closed under linear combinations?

If $\vec{x_1}$ and $\vec{x_2}$ are solutions to $A\vec{x} = \vec{0}$, then $-5\vec{x_1} - 8\vec{x_2}$ is also a solution to $A\vec{x} = \vec{0}$.

• A. True

• B. False

Hint: (Instructor hint preview: show the student hint after 0 attempts. The current number of attempts is 0.)

Is NulA a subspace? Is NulA closed under linear combinations?

If $\vec{x_1}$ and $\vec{x_2}$ are solutions to $A\vec{x} = \vec{b}$, then $-1\vec{x_1} + 1\vec{x_2}$ is also a solution to $A\vec{x} = \vec{b}$.

• A. True

• B. False

Hint: (Instructor hint preview: show the student hint after 0 attempts. The current number of attempts is 0.)

Is the solution set to $A\vec{x} = \vec{b}$ a subspace even when \vec{b} is not $\vec{0}$? Is the solution set to $A\vec{x} = \vec{b}$ closed under linear combinations even when \vec{b} is not $\vec{0}$?

Find the area of the parallelogram determined by the vectors

A. -4

• B. -3

• C. -2

• D. -1

• E. 0

• F. 1 • G. 2

• H. 3 • I. 4

• J. 5

Suppose A is a 8 \times 4 matrix. Then nul A is a subspace of R^k where k =

• A. -4

• B. -3

• C. -2

• D. -1

• E. 0

• F. 1

• G. 2

• H. 3 • I. 4

• J. none of the above

Suppose A is a 3 \times 7 matrix. Then col A is a subspace of R^k where k =

• A. -4

• B. -3

• C. -2

• D. -1

• E. 0

• F. 1 • G. 2

 H. 3 • I. 4

• J. none of the above

Calculate the determinant of

• A. -4

• B. -3

• C. -2

• D. -1

• E. 0

• F. 1

• G. 2 • H. 3

• I. 4

• J. 5

Suppose
$$A \begin{bmatrix} -5 \\ -3 \\ -4 \end{bmatrix} = \begin{bmatrix} 20 \\ 12 \\ 16 \end{bmatrix}$$
. Then an eigenvalue of A is

A. -4

• B. -3

C. -2

D. -1 • E. 0

• F. 1

• G. 2

- H. 3
- I. 4
- J. none of the above

106. (1 pt) local/Library/UI/volumn2.pg

A and B are $n \times n$ matrices.

Check the true statements below:

- A. If A is 3x3, with columns a_1 , a_2 , a_3 , then detA equals the volume of the parallelpiped determined by the vectors a_1 , a_2 , a_3 .
- B. If A is 3x3, with columns a_1 , a_2 , a_3 , then the absolute value of detA equals the volume of the parallelpiped determined by the vectors a_1 , a_2 , a_3 .
- C. $det A^T = (-1) det A$.

107. (1 pt) UI/DIAGtfproblem1.pg

A, P and D are $n \times n$ matrices.

Check the true statements below:

- A. A is diagonalizable if A has n distinct linearly independent eigenvectors.
- B. If AP = PD, with D diagonal, then the nonzero columns of P must be eigenvectors of A.
- C. A is diagonalizable if $A = PDP^{-1}$ for some diagonal matrix D and some invertible matrix P.
- D. A is diagonalizable if and only if A has n eigenvalues, counting multiplicities.
- E. If there exists a basis for \mathbb{R}^n consisting entirely of eigenvectors of A, then A is diagonalizable.
- F. A is diagonalizable if A has n distinct eigenvectors.
- G. If *A* is diagonalizable, then *A* has *n* distinct eigenvalues.
- H. If *A* is symmetric, then *A* is orthogonally diagonalizable.
- I. If A is orthogonally diagonalizable, then A is symmetric.
- J. If A is diagonalizable, then A is invertible.
- K. If A is symmetric, then A is diagonalizable.
- L. If *A* is invertible, then *A* is diagonalizable.
- M. If A is diagonalizable, then A is symmetric.

108. (1 pt) UI/orthog.pg

All vectors and subspaces are in \mathbb{R}^n .

Check the true statements below:

- A. If $A\mathbf{v} = r\mathbf{v}$ and $A\mathbf{w} = s\mathbf{w}$ and $r \neq s$, then $\mathbf{v} \cdot \mathbf{w} = 0$.
- B. If $W = Span\{x_1, x_2, x_3\}$ and if $\{v_1, v_2, v_3\}$ is an orthonormal set in W, then $\{v_1, v_2, v_3\}$ is an orthonormal basis for W.

- C. In a QR factorization, say A = QR (when A has linearly independent columns), the columns of Q form an orthonormal basis for the column space of A.
- D. If x is not in a subspace W, then $x \text{proj}_W(x)$ is not zero.
- E. If $\{v_1, v_2, v_3\}$ is an orthonormal set, then the set $\{v_1, v_2, v_3\}$ is linearly independent.
- F. If \mathbf{v} and \mathbf{w} are both eigenvectors of A and if A is symmetric, then $\mathbf{v} \cdot \mathbf{w} = 0$.
- G. If A is symmetric, $A\mathbf{v} = r\mathbf{v}$, $A\mathbf{w} = s\mathbf{w}$ and $r \neq s$, then $\mathbf{v} \cdot \mathbf{w} = 0$.

109. (1 pt) local/Library/UI/eigenTF.pg

A is $n \times n$ an matrices.

Check the true statements below:

- A. The vector **0** can never be an eigenvector of A
- B. 0 can never be an eigenvalue of A.
- C. The eigenspace corresponding to a particular eigenvalue of *A* contains an infinite number of vectors.
- D. 0 is an eigenvalue of *A* if and only if the columns of *A* are linearly dependent.
- E. A will have at most n eigenvectors.
- F. The vector $\mathbf{0}$ is an eigenvector of A if and only if Ax = 0 has a nonzero solution
- G. There are an infinite number of eigenvectors that correspond to a particular eigenvalue of A.
- H. 0 is an eigenvalue of A if and only if det(A) = 0
- I. A will have at most n eigenvalues.
- J. 0 is an eigenvalue of A if and only if Ax = 0 has a nonzero solution
- K. The vector **0** is an eigenvector of *A* if and only if the columns of *A* are linearly dependent.
- L. The vector **0** is an eigenvector of *A* if and only if det(A) = 0
- M. 0 is an eigenvalue of A if and only if Ax = 0 has an infinite number of solutions

Suppose $A = PDP^{-1}$ where D is a diagonal matrix. If $P = [\vec{p_1} \ \vec{p_2} \ \vec{p_3}]$, then $2\vec{p_1}$ is an eigenvector of A

- A. True
- B. False

Suppose $A = PDP^{-1}$ where D is a diagonal matrix. If $P = [\vec{p_1} \ \vec{p_2} \ \vec{p_3}]$, then $\vec{p_1} + \vec{p_2}$ is an eigenvector of A

- A. True
- B. False

Suppose $A=PDP^{-1}$ where D is a diagonal matrix. Suppose also the d_{ii} are the diagonal entries of D. If $P=[\vec{p_1}\ \vec{p_2}\ \vec{p_3}]$ and $d_{11}=d_{22}$, then $\vec{p_1}+\vec{p_2}$ is an eigenvector of A

- A. True
- B. False

Suppose $A=PDP^{-1}$ where D is a diagonal matrix. Suppose also the d_{ii} are the diagonal entries of D. If $P=[\vec{p_1} \vec{p_2} \vec{p_3}]$ and $d_{22}=d_{33}$, then $\vec{p_1}+\vec{p_2}$ is an eigenvector of A

- A. True
- B. False

If $\vec{v_1}$ and $\vec{v_2}$ are eigenvectors of A corresponding to eigenvalue λ_0 , then $1\vec{v_1}+9\vec{v_2}$ is also an eigenvector of A corresponding to eigenvalue λ_0 when $1\vec{v_1}+9\vec{v_2}$ is not $\vec{0}$.

- A. True
- B. False

Hint: (*Instructor hint preview: show the student hint after 0 attempts. The current number of attempts is 0.*)

Is an eigenspace a subspace? Is an eigenspace closed under linear combinations?

Also, is $1\vec{v_1} + 9\vec{v_2}$ nonzero?

Which of the following is an eigenvalue of $\begin{bmatrix} -8 & -20 \\ 1 & 4 \end{bmatrix}$.

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

Let
$$A = \begin{bmatrix} 9 & -1 & 1 \\ 0 & -8 & -4 \\ 0 & 0 & 9 \end{bmatrix}$$
. Is $A =$ diagonalizable?

- A. yes
- B. no
- C. none of the above

Let
$$A = \begin{bmatrix} -6 & -25 & 40 \\ 0 & -1 & -8 \\ 0 & 0 & -6 \end{bmatrix}$$
. Is $A = \text{diagonalizable}$?

- A. yes
- B. no
- C. none of the above

Let
$$A = \begin{bmatrix} 1 & 9 \\ 8 & -8 \end{bmatrix}$$
. Is $A = \text{diagonalizable}$?

- A. yes
- B. no
- C. none of the above

Hint: (Instructor hint preview: show the student hint after 0 attempts. The current number of attempts is 0.)

You do NOT need to do much work for this problem. You just need to know if the matrix *A* is diagonalizable. Since *A* is a 2 x 2 matrix, you need 2 linearly independent eigenvectors of *A* to form *P*. Does *A* have 2 linearly independent eigenvectors? Note you don't need to know what these eigenvectors are. You don't even need to know the eigenvalues.

Suppose $A = PDP^{-1}$. Then if d_{ii} are the diagonal entries of $D, d_{11} =$,

- A. -4
- B. -3
- C. -2
- D. -1
- F 0
- F. 1
- G. 2
- H. 3I. 4
- J. 5

Hint: (Instructor hint preview: show the student hint after 0 attempts. The current number of attempts is 0.)

Use definition of eigenvalue since you know an eigenvector corresponding to eigenvalue d_{11} .

$\begin{array}{r} -1 \\ -4 \\ \hline 2.66666666666667 \end{array}$ Calculate the dot product:

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

2 3.46410161513775 . Determine the length of

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. 5

If the characteristic polynomial of $A = (\lambda - 6)^5(\lambda - 8)(\lambda +$ 9)8, then the algebraic multiplicity of $\lambda = 8$ is

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1 • G. 2
- H. 3
- I. 4
- J. none of the above

If the characteristic polynomial of $A = (\lambda - 7)^7 (\lambda - 3)(\lambda +$ 8)³, then the geometric multiplicity of $\lambda = 3$ is

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1

- G. 2
- H. 3
- I. 4
- J. none of the above

If the characteristic polynomial of $A = (\lambda + 2)^5 (\lambda + 5)^2 (\lambda (6)^5$, then the algebraic multiplicity of $\lambda = -5$ is

- A. 0
- B. 1
- C. 2
- D. 3
- E. 0 or 1
- F. 0 or 2
- G. 1 or 2
- H. 0, 1, or 2
- I. 0, 1, 2, or 3
- J. none of the above

If the characteristic polynomial of $A = (\lambda + 1)^8 (\lambda + 4)^2 (\lambda +$ $(2)^8$, then the geometric multiplicity of $\lambda = -4$ is

- A. 0
- B. 1
- C. 2
- D. 3
- E. 0 or 1
- F. 0 or 2
- G. 1 or 2
- H. 0, 1, or 2 • I. 0, 1, 2, or 3
- J. none of the above

Suppose the orthogonal projection of is (z_1, z_2, z_3) . Then $z_1 =$

- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

Suppose $\begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$ is a unit vector in the direction of $\begin{bmatrix} -4 \\ 4 \\ 3.52766841475279 \end{bmatrix}$. Then $u_1 =$

- A. -0.8
- B. -0.6
- C. -0.4
- D. -0.2
- E. 0
- F. 0.2
- G. 0.4
- H. 0.6
- I. 0.8
- J. 1

128. (1 pt) Library/Rochester/setLinearAlgebra23QuadraticForms-/ur.la.23.2.pg

Find the eigenvalues of the matrix

$$M = \left[\begin{array}{cc} 30 & 50 \\ 50 & 30 \end{array} \right].$$

Enter the two eigenvalues, separated by a comma:

Classify the quadratic form $Q(x) = x^T Ax$:

- A. Q(x) is positive semidefinite
- B. Q(x) is indefinite
- C. Q(x) is positive definite
- D. Q(x) is negative semidefinite
- E. Q(x) is negative definite

129. (1 pt) Library/Rochester/setLinearAlgebra23QuadraticForms/ur_la_23_3.pg

The matrix

$$A = \begin{bmatrix} -6 & 0 & 0 \\ 0 & -1.4 & -0.8 \\ 0 & -0.8 & -2.6 \end{bmatrix}$$

has three distinct eigenvalues, $\lambda_1 < \lambda_2 < \lambda_3$,

 $\lambda_1 = \underline{\hspace{1cm}},$

 $\lambda_2 = \underline{\hspace{1cm}}$

 $\lambda_3 = _{--}$

Classify the quadratic form $Q(x) = x^T Ax$:

- A. Q(x) is positive semidefinite
- B. Q(x) is negative semidefinite
- C. Q(x) is negative definite
- D. Q(x) is indefinite

• E. Q(x) is positive definite

Use Cramer's rule to solve the following system of equations for *x*:

$$-22x + 6y = 8$$

-4x + 1y = 0

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

131. (1 pt) local/Library/UI/Fall14/quiz2_9.pg

Supppose A is an invertible $n \times n$ matrix and v is an eigenvector of A with associated eigenvalue 6. Convince yourself that v is an eigenvector of the following matrices, and find the associated eigenvalues:

- 1. A^5 , eigenvalue =
 - A. 16
 - B. 81
 - C. 125
 - D. 216
 - E. 1024
 - F. 7776G. 2000
 - H. None of those above
- 2. A^{-1} , eigenvalue =
 - A. -0.5
 - B. -0.333
 - C. 0.166666666666667
 - D. -0.125
 - E. 0
 - F. 0.125
 - G. 0.333
 - H. 0.5
 - I. None of those above
- 3. $A + 6I_n$, eigenvalue =
 - A. -8
 - B. -4
 - C. -5
 - D. 0
 - E. 2

- F. 4
- G. 12
- H. 10
- I. None of those above

4. 9A, eigenvalue =

- A. -40
- B. -36
- C. -28
- D. 54
- E.-12
- F. 0
- G. 24
- H. 36
- I. None of those above

132. (1 pt) local/Library/UI/Fall14/quiz2_10.pg

If
$$v_1 = \begin{bmatrix} -2 \\ 2 \end{bmatrix}$$
 and $v_2 = \begin{bmatrix} -1 \\ -5 \end{bmatrix}$

are eigenvectors of a matrix A corresponding to the eigenvalues $\lambda_1 = 1$ and $\lambda_2 = -2$, respectively, then

a.
$$A(v_1 + v_2) =$$

- 10 • D. 6
- 12 • E. 4
- 0
- G. None of those above

b.
$$A(-3v_1) =$$

- -6

- H. None of those above

133. (1 pt) local/Library/UI/Fall14/quiz2_11.pg

Let
$$v_1 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 3 \\ -1 \\ 0 \end{bmatrix}$, and $v_3 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$

be eigenvectors of the matrix A which correspond to the eigenvalues $\lambda_1 = -3$, $\lambda_2 = 1$, and $\lambda_3 = 2$, respectively, and let

$$v = \begin{bmatrix} -5 \\ -1 \\ 0 \end{bmatrix}.$$

Express v as a linear combination of v_1 , v_2 , and v_3 , and find Av.

1. If
$$v = c_1v_1 + c_2v_2 + c_3v_3$$
, then $(c_1, c_2, c_3) =$

- A. (1,2,2)
- B. (-3,2,4)
- C. (-4,7,3)
- D. (-2,-1,-2)
- E. (0,1,2)
- F. (4,-1,5)
- G. None of above

2. Av =

- -12
- -2 • B. 12
- -6
- 10 • D. 6
- E. 10
- 12 8 • F.
- -3 • G. 12
- H. None of those above

Suppose u and v are eigenvectors of A with eigenvalue 1 and w is an eigenvector of A with eigenvalue 2. Determine which of the following are eigenvectors of A and their corresponding eigenvalues.

- (a.) If 4v an eigenvector of A, determine its eigenvalue. Else state it is not an eigenvector of A.
 - A. -4
 - B. -3
 - C. -2
 - D. -1
 - E. 0
 - F. 1
 - G. 2
 - H. 3
 - I. 4
 - J. 4v need not be an eigenvector of A
- (b.) If 2u + 3v an eigenvector of A, determine its eigenvalue. Else state it is not an eigenvector of A.

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0F. 1
- G. 2
- U. 2
- H. 3I. 4
- J. 2u + 3v need not be an eigenvector of A
- (c.) If 2u + 3w an eigenvector of A, determine its eigenvalue. Else state it is not an eigenvector of A.
 - A. -4
 - B. -3
 - C. -2
 - D. -1
 - E. 0
 - F. 1
 - G. 2
 - H. 3
 - I. 4
 - J. 2u + 3w need not be an eigenvector of A