1. (1 pt) UIOWA.pg

Use Cramer's rule to find the point of intersection of the lines in the figure, given that line A, in red, has equation y = x + 1 and line B, in blue, has equation 2x + 3y = 10.

$$x = _____{v = -}$$

Hint: $Ad i(A) = C^T$.

(Click on graph to enlarge)

(d) $A^{-1} = \begin{bmatrix} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & &$

Hint: Divide Ad i(A) by the determinant.

3. (1 pt) local/Library/UI/ur_la_6_26.pg Let $A = \begin{bmatrix} -3e^{3t} & 4e^{2t} \\ -6e^{3t} & -3e^{2t} \end{bmatrix}$. Find the following: (a) $det(A) = _$ ____

(b) the matrix of cofactors C =

Hint: These are the same cofactors you used to find the determinant. Put these cofactors into the above matrix C.

(c)
$$\operatorname{adj}(A) = \begin{bmatrix} & & \\ & & \\ & & \\ \end{bmatrix}$$

Hint: $Adj(A) = C^T$.

(d)
$$A^{-1} = \begin{bmatrix} & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\$$

Hint: Divide Adj(A) by the determinant.

4. (1 pt) Library/Rochester/setLinearAlgebra4InverseMatrix-/ur_la_4_11.pg If $A = \begin{bmatrix} 2e^{2t}\sin(8t) & -2e^{3t}\cos(8t) \end{bmatrix}$

then
$$A^{-1} = \begin{bmatrix} -5e^{2t}\cos(8t) & -5e^{3t}\sin(8t) \end{bmatrix}$$

5. (1 pt) Library/ASU-topics/set119MatrixAlgebra/p13.pg Consider the following two systems. (a)

(b)

$$\begin{array}{rcl} -6x + 4y &=& 3\\ x - y &=& 1 \end{array}$$

 $\begin{cases} -6x + 4y = -3\\ x - y = 3 \end{cases}$

(i) Find the inverse of the (common) coefficient matrix of the two systems.

(ii) Find the solutions to the two systems by using the inverse, i.e. by evaluating $A^{-1}B$ where B represents the right hand side (i.e. $B = \begin{bmatrix} -3 \\ 3 \end{bmatrix}$ for system (a) and $B = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ for system (b)). Solution to system (a): $x = \underline{\qquad}, y = \underline{\qquad}$ Solution to system (b): $x = _$, $y = _$

6. (1 pt) Library/NAU/setLinearAlgebra/systemEquivalent.pg Determine the following equivalent representations of the following system of equations:

$$7x + 7y = 0$$

$$-2x + 4y = -18$$

a. Find the augmented matrix of the system.

 $\begin{bmatrix} - & - \\ - & - \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} - \\ - \end{bmatrix}$

c. Find a matrix that satisfies the following matrix equation. $\begin{bmatrix} x \\ \end{bmatrix}_{=} \begin{bmatrix} - & - \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

$$y] = [_] [-18]$$

d. Find matrices that satisfy the following matrix equation.

e. The graph below shows the lines determined by the two equations in our system:

Find the coordinates of

P =(____)

Find the coordinates of y-intercept of the red line. $A = (0, __)$ Find the coordinates of x-intercept of the green line. $B = (__, 0)$

7. (1 pt) Library/Rochester/setLinearAlgebra3Matrices/ur_la_3_15.pg Find a and b such that

$$\begin{bmatrix} 9\\12\\2 \end{bmatrix} = a \begin{bmatrix} 1\\4\\-1 \end{bmatrix} + b \begin{bmatrix} 4\\-8\\7 \end{bmatrix}.$$

 $a = _$ $b = _$

8. (1 pt) Library/NAU/setLinearAlgebra/HomLinEq.pg Solve the equation

$$-8x + 6y + 5z = 0$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = s \begin{bmatrix} - \\ - \\ - \end{bmatrix} + t \begin{bmatrix} - \\ - \\ - \end{bmatrix}$$

10. (1 pt) Library/Rochester/setLinearAlgebra9Dependence-/ur_la_9_3.pg

Let
$$A = \begin{bmatrix} -14 \\ 26 \\ 30 \\ 2 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 \\ -1 \\ -3 \\ 5 \end{bmatrix}$, $C = \begin{bmatrix} -4 \\ 7 \\ 7 \\ 3 \end{bmatrix}$, and $D = \begin{bmatrix} 2 \\ -3 \\ -3 \\ -3 \\ -3 \end{bmatrix}$.

[?]1. Determine whether or not the four vectors listed above are linearly independent or linearly dependent.

If they are linearly dependent, determine a non-trivial linear relation - (a non-trivial relation is three numbers which are not all three zero.) Otherwise, if the vectors are linearly independent, enter 0's for the coefficients, since that relationship **always** holds.

$$\underline{\qquad} A + \underline{\qquad} B + \underline{\qquad} C + \underline{\qquad} D = 0.$$

11. (1 pt) Library/Rochester/setLinearAlgebra10Bases/ur_la_10_26.pg Find a basis of the subspace of \mathbb{R}^4 defined by the equation $4x_1 + 5x_2 + 2x_3 - 2x_4 = 0$.

$$\begin{bmatrix} - \\ - \\ - \\ - \end{bmatrix}, \begin{bmatrix} - \\ - \\ - \\ - \end{bmatrix}, \begin{bmatrix} - \\ - \\ - \\ - \end{bmatrix}$$

12. (1 pt) Library/Rochester/setLinearAlgebra10Bases/ur_la_10_30.pg Find a basis of the column space of the matrix

	2	4	0	-3]
A =	-2	3	-2	-1	.
	-6	-5	-2	5	
Γ_	1	Γ		٦	-
	-	'			•
ι —	-]	L	- —	٦	

13. (1 pt) Library/Rochester/setLinearAlgebra11Eigenvalues-/ur_la_11_1.pg

Find the characteristic polynomial of the matrix

$$A = \begin{bmatrix} -4 & -3 \\ 7 & -2 \end{bmatrix}.$$
$$p(x) = \underline{\qquad}$$

14. (1 pt) Library/Rochester/setLinearAlgebra11Eigenvalues-/ur_la_11_7.pg

The matrix $\begin{bmatrix} 4 & 0 & -9 \end{bmatrix}$

 $C = \left[\begin{array}{rrr} -18 & -5 & 18 \\ 0 & 0 & -5 \end{array} \right]$

has two distinct eigenvalues, $\lambda_1 < \lambda_2$:

 $\lambda_1 =$ ____ has multiplicity ____. The dimension of the corresponding eigenspace is ____.

 $\lambda_2 =$ ____ has multiplicity ____. The dimension of the corresponding eigenspace is ____.

Is the matrix C diagonalizable? (enter YES or NO) _____

15. (1 pt) Library/Rochester/setLinearAlgebra11Eigenvalues-/ur_la_11_18.pg

The matrix $A = \begin{bmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ -2 & 0 & -2 \end{bmatrix}$

has one real eigenvalue. Find this eigenvalue and a basis of the eigenspace.

eigenvalue = ____, Basis: $\begin{bmatrix} - \\ - \\ - \end{bmatrix}$, $\begin{bmatrix} - \\ - \\ - \end{bmatrix}$

16. (1 pt) Library/Rochester/setLinearAlgebra11Eigenvalues-/ur_la_11_24.pg

The matrix $A = \begin{bmatrix} -5 & 0 & 5 & -5 \\ 0 & -5 & -10 & 10 \\ 0 & 0 & 5 & -10 \\ 0 & 0 & 5 & -10 \end{bmatrix}$. has two distinct eigen-

values $\lambda_1 < \lambda_2$. Find the eigenvalues and a basis of each eigenspace.

17. (1 pt) Library/Rochester/setLinearAlgebra12Diagonalization-/ur_la_12_1.pg

Let $M = \begin{bmatrix} 6 & 2 \\ -1 & 9 \end{bmatrix}$.

Find formulas for the entries of M^n , where *n* is a positive integer.

18. (1 pt) Library/Rochester/setLinearAlgebra17DotProductRn-/ur_la_17_2.pg

u =

Find a vector v perpendicular to the vector $u = \begin{bmatrix} -3 \\ 4 \end{bmatrix}$.

 $v = \begin{bmatrix} - \\ - \end{bmatrix}.$

20. (1 pt) Library/Rochester/setLinearAlgebra17DotProductRn-/ur_la_17_7.pg

Find the value of k for which the vectors

$$x = \begin{bmatrix} 4 \\ 0 \\ -1 \\ -4 \end{bmatrix} \text{ and } y = \begin{bmatrix} -3 \\ 1 \\ 3 \\ k \end{bmatrix} \text{ are orthogonal.}$$
$$k = \underline{\qquad}.$$

21. (1 pt) Library/Rochester/setLinearAlgebra18OrthogonalBases-/ur_la_18_7.pg

Let
$$A = \begin{bmatrix} -2 & -3 & -4 & 1 \\ 3 & 6 & 6 & -2 \end{bmatrix}$$
.
Find an orthonormal basis of the kernel of A .
 $\begin{bmatrix} -1 \\ -2 \\ -2 \end{bmatrix}, \begin{bmatrix} -1 \\ -2 \\ -2 \end{bmatrix}$.

22. (1 pt) Library/Rochester/setLinearAlgebra18OrthogonalBases-/ur_la_18_11.pg

$$\operatorname{Let} A = \begin{bmatrix} 1 & 0 & 3 \\ -1 & -3 & 3 \\ 3 & 10 & -11 \end{bmatrix}$$

Find an orthonormal basis of the column space of A.

23. (1 pt) Library/TCNJ/TCNJ_CharacteristicPolynomial-/problem5.pg

The matrix.

$$A = \left[\begin{array}{rrr} 7 & 2 \\ -2 & 3 \end{array} \right]$$

has an eigenvalue λ of multiplicity 2 with corresponding eigenvector \vec{v} . Find λ and \vec{v} .

is spanA,B where A = $\begin{bmatrix} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$

29. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4-/4.2.29a.pg

Find a basis for the null space of the matrix.

$$A = \begin{bmatrix} -3 & -7 \\ 1 & 9 \end{bmatrix}$$

Basis for null(A) =

30. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4-/4.2.32a.pg

Find a basis for the null space of matrix A.

31. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4-/holt_01_04_028.pg

Find the values of the coefficients a, b and c so that the conditions

$$f(0) = 3$$
, $f'(0) = 19$, and $f''(0) = -9$

hold for the function

$$f(x) = ae^x + be^{2x} + ce^{-3x}.$$

 $a = __$ $b = __$

32. (1 pt) Library/maCalcDB/setAlgebra34Matrices/det_inv_3x3a.pg Given the matrix

[1	0	-5
	-3	-2
4	0	-3

(a) its determinant is:

(b) does the matrix have an inverse? ?

33. (1 pt) Library/NAU/setLinearAlgebra/diag3x3.pg									
Let $A =$	5 -8	-12							
Let $A =$	4 -7	-6	•	Find	an inv	vertible	ma-		
	2 -2	-6							
trix P and a diagonal matrix D such that $D = P^{-1}AP$.									
$P = \begin{bmatrix}\\\\ \end{bmatrix}$]	Γ]		
P =			D =	:					
				_					
-			-	-			-		

35. (1 pt) local/Library/UI/LinearSystems/ur_la_1_19AxB.pg Solve the system

$$\begin{cases} 4x_1 - 5x_2 + 3x_3 + 2x_4 = 0\\ -x_1 + x_2 + 2x_3 + 3x_4 = 0\\ 3x_1 - 4x_2 + 5x_3 + 5x_4 = 0\\ -3x_1 + 3x_2 + 6x_3 + 9x_4 = 0 \end{cases}$$
$$\begin{bmatrix} x_1\\ x_2\\ x_3\\ x_4 \end{bmatrix} = + \begin{bmatrix} -\\ -\\ -\\ -\\ -\\ -\end{bmatrix} s + \begin{bmatrix} -\\ -\\ -\\ -\\ -\\ -\end{bmatrix} t.$$

Solve the system

$$\begin{cases} 4x_1 - 5x_2 + 3x_3 + 2x_4 = 4 \\ -x_1 + x_2 + 2x_3 + 3x_4 = 2 \\ 3x_1 - 4x_2 + 5x_3 + 5x_4 = 6 \\ -3x_1 + 3x_2 + 6x_3 + 9x_4 = 6 \end{cases}$$
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} - \\ - \\ - \\ - \\ - \\ - \end{bmatrix} + \begin{bmatrix} - \\ - \\ - \\ - \\ - \\ - \end{bmatrix} s + \begin{bmatrix} - \\ - \\ - \\ - \\ - \\ - \\ - \end{bmatrix} t.$$

If the matrix A corresponds to the coefficient matrix for the above system of equations, then given any vector \vec{b} , the matrix equation $A\vec{x} = \vec{b}$ will always has an infinite number of solutions.

- A. True
- B. False

36. (1 pt) local/Library/UI/LinearSystems/ur_la_1_20vv3.pg Solve the system

$$\begin{cases} x_1 + 4x_2 - 2x_3 + 4x_5 + 4x_6 = 0\\ -x_4 + 5x_5 + 3x_6 = 0\\ x_1 + 4x_2 - 6x_5 + 8x_6 = 0 \end{cases}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} - & \\ - &$$

Solve the system

If the matrix A corresponds to the coefficient matrix for the above system of equations, then given any vector \vec{b} , the matrix equation $A\vec{x} = \vec{b}$ will always has an infinite number of solutions.

- A. True
- B. False

37. (1 pt) Library/NAU/setLinearAlgebra/m1.pg Find the inverse of AB if

40. (1 pt) local/Library/UI/4.3.3.pg

Find bases for the column space and the null space of matrix A. You should verify that the Rank-Nullity Theorem holds. An equivalent echelon form of matrix A is given to make your work easier.

$$A = \begin{bmatrix} 1 & 0 & -4 & -3 \\ -2 & 1 & 13 & 5 \\ 0 & 1 & 5 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -4 & -3 \\ 0 & 1 & 5 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Basis for the column space of $A = \begin{bmatrix} - & & \\ - & &$

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

41. (1 pt) local/Library/UI/6a.pg 2 0 5 -1 6 2 4 4 -1 5 1 0 4 1 1

42. (1 pt) Library/Rochester/setLinearAlgebra23QuadraticForms-/ur_la_23_1.pg

Write the matrix of the quadratic form

$$Q(x) = -4x_1^2 + 2x_2^2 - 6x_3^2 - 5x_1x_2 - 9x_1x_3 - 1x_2x_3.$$
$$A = \begin{bmatrix} -4x_1^2 + 2x_2^2 - 6x_3^2 - 5x_1x_2 - 9x_1x_3 - 1x_2x_3 \\ -4x_1^2 - 4x_1^2 - 5x_1x_2 - 9x_1x_3 - 1x_2x_3 \end{bmatrix}.$$

43. (1 pt) Library/Rochester/setLinearAlgebra23QuadraticForms-/ur_la_23_4.pg

If
$$A = \begin{bmatrix} 5 & 8 \\ 8 & -9 \end{bmatrix}$$
 and $Q(x) = x \cdot Ax$,
Then $Q(e_1) =$ ____ and $Q(e_2) =$ ____.

44. (1 pt) Library/Rochester/setLinearAlgebra23QuadraticForms-/ur_la_23_5.pg

If
$$A = \begin{bmatrix} 7 & 9 & 7 \\ 9 & 5 & -9 \\ 7 & -9 & -9 \end{bmatrix}$$
 and $Q(x) = x \cdot Ax$,
Then $Q(x_1, x_2, x_3) = _ x_1^2 + _ x_2^2 + _ x_3^2 + _ x_1 x_2 + _$
 $x_1 x_3 + _ x_2 x_3$.