Assignment FinalExamOptionalReviewWritten due 12/27/2014 at 01:57pm CST

1. (1 pt) UIOWA.pg

Use Cramer's rule to find the point of intersection of the lines in the figure, given that line A, in red, has equation $y=x+1$ and line B, in blue, has equation $2 x+3 y=10$.
$x=$ \qquad
$y=$ \qquad

(Click on graph to enlarge)
2. (1 pt) local/Library/UI/ur_la_6_25.pg

Let $A=\left[\begin{array}{ccc}-2 & 2 & -1 \\ 1 & 1 & -2 \\ 1 & 2 & 0\end{array}\right]$.
Find the following:
(a) $\operatorname{det}(A)=$ \qquad
(b) the matrix of cofactors $C=\left[\begin{array}{lll}\square & \square & - \\ \square & \square & - \\ \square & - & -\end{array}\right]$,

Hint: These are the same cofactors you used to find the determinant. Put these cofactors into the above matrix C.
(c) $\operatorname{adj}(A)=\left[\begin{array}{lll}\square & \square & - \\ \square & - & - \\ \square & - & -\end{array}\right]$,

Hint: $\operatorname{Adj}(A)=C^{T}$.
(d) $A^{-1}=\left[\begin{array}{lll}\square & - & - \\ - & - & - \\ - & -\end{array}\right]$.

Hint: Divide $\operatorname{Adj}(A)$ by the determinant.
3. (1 pt) local/Library/UI/ur_la_6_26.pg

Let $A=\left[\begin{array}{cc}-3 e^{3 t} & 4 e^{2 t} \\ -6 e^{3 t} & -3 e^{2 t}\end{array}\right]$.
Find the following:
(a) $\operatorname{det}(A)=$ \qquad
(b) the matrix of cofactors $C=[\square$ \qquad
Hint: These are the same cofactors you used to find the determinant. Put these cofactors into the above matrix C.
(c) $\operatorname{adj}(A)=\left[\begin{array}{ll}\square & \square\end{array}\right]$,

Hint: $\operatorname{Adj}(A)=C^{T}$.
(d) $A^{-1}=\left[\begin{array}{ll}\square & \square\end{array}\right]$.

Hint: Divide $\operatorname{Adj}(A)$ by the determinant.
4. (1 pt) Library/Rochester/setLinearAlgebra4InverseMatrix-
/ur_la_4_11.pg
If $A=\left[\begin{array}{cc}2 e^{2 t} \sin (8 t) & -2 e^{3 t} \cos (8 t) \\ -5 e^{2 t} \cos (8 t) & -5 e^{3 t} \sin (8 t)\end{array}\right]$
then $A^{-1}=\left[\begin{array}{ll}\square & \square\end{array}\right]$.
5. (1 pt) Library/ASU-topics/set119MatrixAlgebra/p13.pg

Consider the following two systems.
(a)

$$
\left\{\begin{array}{ccc}
-6 x+4 y & = & -3 \\
x-y & = & 3
\end{array}\right.
$$

(b)

$$
\left\{\begin{array}{cc}
-6 x+4 y & =3 \\
x-y & =1
\end{array}\right.
$$

(i) Find the inverse of the (common) coefficient matrix of the two systems.

$$
A^{-1}=\left[\begin{array}{ll}
\square & -
\end{array}\right]
$$

(ii) Find the solutions to the two systems by using the inverse, i.e. by evaluating $A^{-1} B$ where B represents the right hand side (i.e. $B=\left[\begin{array}{c}-3 \\ 3\end{array}\right]$ for system (a) and $B=\left[\begin{array}{l}3 \\ 1\end{array}\right]$ for system (b)).

Solution to system (a): $x=$ \qquad $y=$
Solution to system (b): $x=$ \qquad , $y=$
6. (1 pt) Library/NAU/setLinearAlgebra/systemEquivalent.pg Determine the following equivalent representations of the following system of equations:

$$
\begin{gathered}
7 x+7 y=0 \\
-2 x+4 y=-18
\end{gathered}
$$

a. Find the augmented matrix of the system.
$\left[\begin{array}{lll}- & - & - \\ - & - & -\end{array}\right]$
b. Find the matrix form of the system.
$\left[\begin{array}{ll}- & - \\ - & -\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}- \\ -\end{array}\right]$
c. Find a matrix that satisfies the following matrix equation.
$\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{ll}- & - \\ - & -\end{array}\right]\left[\begin{array}{c}0 \\ -18\end{array}\right]$
d. Find matrices that satisfy the following matrix equation.
$x\left[\begin{array}{l}- \\ -\end{array}\right]+y\left[\begin{array}{l}- \\ -\end{array}\right]$
e. The graph below shows the lines determined by the two equations in our system:

Find the coordinates of
$P=(—$, —)
Find the coordinates of y-intercept of the red line.
$A=(0,-\quad)$
Find the coordinates of x-intercept of the green line.
$B=(—, 0)$
7. (1 pt) Library/Rochester/setLinearAlgebra3Matrices/ur」a_3_15.pg Find a and b such that

$$
\left[\begin{array}{r}
9 \\
12 \\
2
\end{array}\right]=a\left[\begin{array}{r}
1 \\
4 \\
-1
\end{array}\right]+b\left[\begin{array}{r}
4 \\
-8 \\
7
\end{array}\right]
$$

$a=$ \qquad
$b=$ \square
8. (1 pt) Library/NAU/setLinearAlgebra/HomLinEq.pg

Solve the equation

$$
-8 x+6 y+5 z=0
$$

$\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=s\left[\begin{array}{l}- \\ -\end{array}\right]+t\left[\begin{array}{l}- \\ - \\ -\end{array}\right]$
9. (1 pt) Library/Rochester/setAlgebra34Matrices/scalarmult3.pg

If $A=\left[\begin{array}{ccc}-2 & 4 & 4 \\ 2 & -2 & -3 \\ -3 & 2 & 4\end{array}\right]$ and $B=\left[\begin{array}{ccc}1 & 2 & 0 \\ -4 & -3 & -2 \\ 1 & 2 & 2\end{array}\right]$, then
$3 A-4 B=\left[\begin{array}{lll}- & - & - \\ - & - & -\end{array}\right]$ and
$A^{T}=\left[\begin{array}{lll}- & - & - \\ - & - & - \\ - & - & -\end{array}\right]$.
10. ($\mathbf{1} \quad \mathrm{pt})$ Library/Rochester/setLinearAlgebra9Dependence-
/ur_la_9.3.pg
Let $A=\left[\begin{array}{c}-14 \\ 26 \\ 30 \\ 2\end{array}\right], B=\left[\begin{array}{c}0 \\ -1 \\ -3 \\ 5\end{array}\right], C=\left[\begin{array}{c}-4 \\ 7 \\ 7 \\ 3\end{array}\right]$, and $D=\left[\begin{array}{c}2 \\ -3 \\ -3 \\ -3\end{array}\right]$
? 1. Determine whether or not the four vectors listed above are linearly independent or linearly dependent.

If they are linearly dependent, determine a non-trivial linear relation - (a non-trivial relation is three numbers which are not all three zero.) Otherwise, if the vectors are linearly independent, enter 0's for the coefficients, since that relationship always holds.
$\quad A+\ldots \quad B+\ldots C+\ldots \quad D=0$.
11. ($\mathbf{1} \mathrm{pt}$) Library/Rochester/setLinearAlgebra10Bases/ur Ja_10_26.pg Find a basis of the subspace of \mathbb{R}^{4} defined by the equation $4 x_{1}+5 x_{2}+2 x_{3}-2 x_{4}=0$.
$\left[\begin{array}{l}- \\ - \\ -\end{array}\right],\left[\begin{array}{l}- \\ - \\ -\end{array}\right],\left[\begin{array}{l}- \\ - \\ -\end{array}\right]$.
12. (1 pt) Library/Rochester/setLinearAlgebra10Bases/ur_la_10_30.pg Find a basis of the column space of the matrix

$$
\begin{aligned}
& A=\left[\begin{array}{cccc}
2 & 4 & 0 & -3 \\
-2 & 3 & -2 & -1 \\
-6 & -5 & -2 & 5
\end{array}\right] \\
& {\left[\begin{array}{l}
- \\
-
\end{array}\right],\left[\begin{array}{ll}
- \\
- & \\
- &]
\end{array}\right.}
\end{aligned}
$$

13. (1 pt) Library/Rochester/setLinearAlgebra11Eigenvalues/ur」a_11_1.pg
Find the characteristic polynomial of the matrix
$A=\left[\begin{array}{cc}-4 & -3 \\ 7 & -2\end{array}\right]$.
$p(x)=$
14. (1 pt) Library/Rochester/setLinearAlgebra11Eigenvalues-
/ur_la_11_7.pg
The matrix
$C=\left[\begin{array}{ccc}4 & 0 & -9 \\ -18 & -5 & 18 \\ 0 & 0 & -5\end{array}\right]$
has two distinct eigenvalues, $\lambda_{1}<\lambda_{2}$:
$\lambda_{1}=\ldots$ has multiplicity __. The dimension of the corresponding eigenspace is \qquad
$\lambda_{2}=\ldots$ has multiplicity __. The dimension of the corresponding eigenspace is \qquad
Is the matrix C diagonalizable? (enter YES or NO) __
15. (1 pt) Library/Rochester/setLinearAlgebra11Eigenvalues/ur_la_11_18.pg
The matrix $A=\left[\begin{array}{ccc}-2 & 0 & 0 \\ 0 & -2 & 0 \\ -2 & 0 & -2\end{array}\right]$
has one real eigenvalue. Find this eigenvalue and a basis of the eigenspace.
eigenvalue $=$
eigenvalue $=$
Basis: $\left[\begin{array}{l}- \\ -\end{array}\right],\left[\begin{array}{l}- \\ -\end{array}\right]$.
16. (1 pt) Library/Rochester/setLinearAlgebra11Eigenvalues/ur_la_11_24.pg
The matrix $A=\left[\begin{array}{cccc}-5 & 0 & 5 & -5 \\ 0 & -5 & -10 & 10 \\ 0 & 0 & 5 & -10 \\ 0 & 0 & 5 & -10\end{array}\right]$. has two distinct eigen-
values $\lambda_{1}<\lambda_{2}$. Find the eigenvalues and a basis of each eigenspace.
$\begin{aligned} & \lambda_{1}= \\ & \text { Basis: }\end{aligned}\left[\begin{array}{l}- \\ - \\ -\end{array}\right],\left[\begin{array}{l}- \\ - \\ -\end{array}\right],\left[\begin{array}{l}- \\ - \\ -\end{array}\right]$,
$\lambda_{2}=$
Basis: $\left[\begin{array}{l}- \\ - \\ -\end{array}\right]$.
17. (1 pt$)$ Library/Rochester/setLinearAlgebra12Diagonalization/ur_la_12.1.pg
Let $M=\left[\begin{array}{cc}6 & 2 \\ -1 & 9\end{array}\right]$.
Find formulas for the entries of M^{n}, where n is a positive integer.
$M^{n}=\left[\begin{array}{ll}\square & \square\end{array}\right]$.
18. (1 pt$)$ Library/Rochester/setLinearAlgebra17DotProductRn/ur_la_17_2.pg
Let $x=\left[\begin{array}{c}5 \\ 5 \\ -1 \\ 5\end{array}\right]$.
Find the norm of x and the unit vector in the direction of x.
$\| x| |=$
$u=\left[\begin{array}{l}\square \\ \square \\ \square \\ \square\end{array}\right]$.
19. (1 pt$)$ Library/Rochester/setLinearAlgebra17DotProductRn/ur_la_17.6.pg
Find a vector v perpendicular to the vector $u=\left[\begin{array}{c}-3 \\ 4\end{array}\right]$. $v=\left[\begin{array}{l}- \\ -\end{array}\right]$.
20. (1 pt) Library/Rochester/setLinearAlgebra17DotProductRn-/ur_la_17-7.pg
Find the value of k for which the vectors
$x=\left[\begin{array}{c}4 \\ 0 \\ -1 \\ -4\end{array}\right]$ and $y=\left[\begin{array}{c}-3 \\ 1 \\ 3 \\ k\end{array}\right]$ are orthogonal.
$k=$
21. (1 pt) Library/Rochester/setLinearAlgebra18OrthogonalBases/ur_la_18_7.pg
Let $A=\left[\begin{array}{cccc}-2 & -3 & -4 & 1 \\ 3 & 6 & 6 & -2\end{array}\right]$.
Find an orthonormal basis of the kernel of A.
$\left[\begin{array}{ll}- & \\ - & \\ - & \end{array}\right],\left[\begin{array}{l}- \\ - \\ -\end{array}\right]$.
22. (1 pt) Library/Rochester/setLinearAlgebra18OrthogonalBases/ur_la_18_11.pg
Let $A=\left[\begin{array}{ccc}1 & 0 & 3 \\ -1 & -3 & 3 \\ 3 & 10 & -11\end{array}\right]$.
Find an orthonormal basis of the column space of A.
$\left[\begin{array}{ll}- \\ - &]\end{array}\right],\left[\begin{array}{l}- \\ - \\ -\end{array}\right]$.
23. (1 pt) Library/TCNJ/TCNJ_CharacteristicPolynomial/problem5.pg
The matrix.

$$
A=\left[\begin{array}{cc}
7 & 2 \\
-2 & 3
\end{array}\right]
$$

has an eigenvalue λ of multiplicity 2 with corresponding eigenvector \vec{v}. Find λ and \vec{v}.
$\lambda=\quad$ _ has an eigenvector $\vec{v}=\left[\begin{array}{l}- \\ -\end{array}\right]$
24. (1 pt) Library/TCNJ/TCNJ_Diagonalization/problem4.pg

Let: $A=\left[\begin{array}{cc}11 & -9 \\ 18 & -16\end{array}\right]$
Find S, D and S^{-1} such that $A=S D S^{-1}$.
$S=\left[\begin{array}{ll}- & - \\ - & -\end{array}\right], D=\left[\begin{array}{ll}\overline{0} & 0 \\ 0 & -\end{array}\right], S^{-1}=\left[\begin{array}{ll}\square & - \\ - & -\end{array}\right]$
25. (1 pt) Library/TCNJ/TCNJ_OrthogonalSets/problem9.pg

Given $v=\left[\begin{array}{c}-2 \\ 3\end{array}\right]$, find the coordinates for v in the subspace W spanned by $u_{1}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and $u_{2}=\left[\begin{array}{c}-6 \\ 12\end{array}\right]$. Note that u_{1} and u_{2} are orthogonal.

$$
v=ـ \quad u_{1}+
$$

26. (1 pt) Library/TCNJ/TCNJ_VectorEquations/problem3.pg Let $A=\left[\begin{array}{lll}-3 & -3 & 0 \\ -1 & -3 & 2 \\ -3 & -4 & 1\end{array}\right]$ and $b=\left[\begin{array}{c}-8 \\ -4 \\ -14\end{array}\right]$.
? 1. Determine if b is a linear combination of a_{1}, a_{2} and a_{3}, the columns of the matrix A.

If it is a linear combination, determine a non-trivial linear relation - (a non-trivial relation is three numbers which are not all three zero.) Otherwise, enter 0 's for the coefficients.
\qquad $a_{1}+$ \qquad $a_{2}+$ \qquad $a_{3}=b$.
27. (1 pt) Library/Utah/College_Algebra/set12_Matrices_and_Determinan /1050s12p11.pg
The determinant of the matrix

$$
A=\left[\begin{array}{rrrr}
3 & 4 & 0 & 5 \\
2 & -2 & 0 & 0 \\
0 & 3 & 0 & 0 \\
8 & -6 & 1 & -8
\end{array}\right]
$$

is \qquad
Hint: Find a good row or column and expand by minors.
28. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-414.1.77.pg

The null space for the matrix $\left[\begin{array}{ccccc}1 & 7 & -2 & 14 & 0 \\ 3 & 0 & 1 & -2 & 3 \\ 6 & 1 & -1 & 0 & 4\end{array}\right]$
is spanA,B where $\mathrm{A}=\left[\begin{array}{l}\square \\ \square \\ \square\end{array}\right] \mathrm{B}=\left[\begin{array}{l}\square \\ \square \\ \square\end{array}\right]$
29. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-414.2.29a.pg

Find a basis for the null space of the matrix.
$A=\left[\begin{array}{cc}-3 & -7 \\ 1 & 9\end{array}\right]$
Basis for $\operatorname{null}(A)=\left[\begin{array}{l}- \\ -\end{array}\right.$
30. (1 pt) Library/WHFreeman/Holt linear_algebra/Chaps_1-414.2.32a.pg

Find a basis for the null space of matrix A.
$A=\left[\begin{array}{ccccc}1 & 0 & -2 & 3 & -1 \\ 0 & 1 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 & 2\end{array}\right]$
Basis $=\left[\begin{array}{l}- \\ - \\ - \\ -\end{array}\right]\left[\begin{array}{l}- \\ - \\ - \\ -\end{array}\right]$
31. ($\mathbf{1}$ pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4/holt_01_04_028.pg
Find the values of the coefficients a, b and c so that the conditions

$$
f(0)=3, \quad f^{\prime}(0)=19, \quad \text { and } \quad f^{\prime \prime}(0)=-9
$$

hold for the function

$$
f(x)=a e^{x}+b e^{2 x}+c e^{-3 x}
$$

$a=$
$b=$ \qquad -
\qquad
32. (1 pt) Library/maCalcDB/setAlgebra34Matrices/det_inv_3x3a.pg Given the matrix

$$
\left[\begin{array}{ccc}
1 & 0 & -5 \\
0 & -3 & -2 \\
4 & 0 & -3
\end{array}\right]
$$

(a) its determinant is: \qquad
(b) does the matrix have an inverse? ?
33. (1 pt) Library/NAU/setLinearAlgebra/diag3x3.pg

Let $A=\left[\begin{array}{lll}5 & -8 & -12 \\ 4 & -7 & -6 \\ 2 & -2 & -6\end{array}\right]$. Find an invertible matrix P and a diagonal matrix D such that $D=P^{-1} A P$. $P=\left[\begin{array}{lll}- & - & - \\ - & - & -\end{array}\right] D=\left[\begin{array}{lll}- & - & - \\ - & - & - \\ - & - & -\end{array}\right]$
34. (1 pt) loca//Library/UI/LinearSystems/diag.pg

Given that the matrix A has eigenvalue $\lambda_{1}=2$ with corresponding eigenvector $\left[\begin{array}{l}4 \\ 2\end{array}\right]$
and eigenvalue $\lambda_{2}=-8$ with corresponding eigenvector $\left[\begin{array}{l}0 \\ 1\end{array}\right]$, find A.
$A=\left[\begin{array}{ll}\square & \square\end{array}\right]$.
35. (1 pt) local/Library/UI/LinearSystems/ur」a_1_19AxB.pg Solve the system

$$
\left\{\begin{aligned}
4 x_{1}-5 x_{2}+3 x_{3}+2 x_{4} & =0 \\
-x_{1}+x_{2}+2 x_{3}+3 x_{4} & =0 \\
3 x_{1}-4 x_{2}+5 x_{3}+5 x_{4} & =0 \\
-3 x_{1}+3 x_{2}+6 x_{3}+9 x_{4} & =0
\end{aligned}\right.
$$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=+\left[\begin{array}{l}
- \\
- \\
-
\end{array}\right] s+\left[\begin{array}{l}
- \\
- \\
-
\end{array}\right] t
$$

Solve the system

$$
\left\{\begin{aligned}
4 x_{1}-5 x_{2}+3 x_{3}+2 x_{4} & =4 \\
-x_{1}+x_{2}+2 x_{3}+3 x_{4} & =2 \\
3 x_{1}-4 x_{2}+5 x_{3}+5 x_{4} & =6 \\
-3 x_{1}+3 x_{2}+6 x_{3}+9 x_{4} & =6
\end{aligned}\right.
$$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
- \\
- \\
-
\end{array}\right]+\left[\begin{array}{l}
- \\
- \\
-
\end{array}\right] s+\left[\begin{array}{l}
- \\
- \\
-
\end{array}\right] t
$$

If the matrix A corresponds to the coefficient matrix for the above system of equations, then given any vector \vec{b}, the matrix equation $A \vec{x}=\vec{b}$ will always has an infinite number of solutions.

- A. True
- B. False

36. (1 pt) local/Library/UI/LinearSystems/ur」a_1_20vv3.pg Solve the system

$$
\left\{\begin{array}{rl}
x_{1}+4 x_{2}-2 x_{3}+4 x_{5}+4 x_{6} & =0 \\
-x_{4}+5 x_{5}+3 x_{6} & =0 \\
x_{1}+4 x_{2} & -6 x_{5}+8 x_{6}
\end{array}=0\right.
$$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]=\left[\begin{array}{l}
- \\
- \\
- \\
-
\end{array}\right] s+\left[\begin{array}{l}
- \\
- \\
- \\
-
\end{array}\right] t+\left[\begin{array}{l}
- \\
- \\
- \\
- \\
-
\end{array}\right] u
$$

Solve the system

$$
\begin{aligned}
& \left\{\begin{array}{rr}
x_{1}+4 x_{2}-2 x_{3} & +4 x_{5}+4 x_{6}=0 \\
x_{1}+4 x_{2} & -x_{4}+5 x_{5}+3 x_{6}=1 \\
-6 x_{5}+8 x_{6}=2
\end{array}\right. \\
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]=\left[\begin{array}{l}
- \\
- \\
- \\
- \\
- \\
- \\
- \\
- \\
- \\
- \\
-
\end{array}\right] u .} \\
& {\left[\begin{array}{l}
- \\
- \\
- \\
- \\
- \\
- \\
-
\end{array}\right]}
\end{aligned}
$$

If the matrix A corresponds to the coefficient matrix for the above system of equations, then given any vector \vec{b}, the matrix equation $A \vec{x}=\vec{b}$ will always has an infinite number of solutions.

- A. True
- B. False

37. (1 pt) Library/NAU/setLinearAlgebra/m1.pg

Find the inverse of $A B$ if

$$
\begin{aligned}
& A^{-1}=\left[\begin{array}{cc}
2 & -5 \\
3 & 4
\end{array}\right] \text { and } B^{-1}=\left[\begin{array}{cc}
4 & 0 \\
4 & -2
\end{array}\right] . \\
& (A B)^{-1}=\left[\begin{array}{ll}
- & -
\end{array}\right]
\end{aligned}
$$

38. ($\mathbf{1} \mathbf{~ p t) ~ L i b r a r y / R o c h e s t e r / s e t A l g e b r a 3 4 M a t r i c e s / c u b i n g ~} 2 \mathbf{2 x} 2 . p g$ Given the matrix $A=\left[\begin{array}{cc}3 & -4 \\ 0 & 2\end{array}\right]$, find A^{3}.
$A^{3}=\left[\begin{array}{ll}- & - \\ - & -\end{array}\right]$.

39. (1 pt) local/Library/UI/4.1.77.pg

The null space for the matrix $\left[\begin{array}{ccccc}1 & 7 & -2 & 14 & 0 \\ 3 & 0 & 1 & -2 & 3 \\ 6 & 1 & -1 & 0 & 4\end{array}\right]$
is spanA,B where $\mathrm{A}=\left[\begin{array}{l}\square \\ \square \\ \square\end{array}\right] \mathrm{B}=\left[\begin{array}{l}\square \\ \square \\ \square\end{array}\right]$

40. (1 pt) local/Library/UI/4.3.3.pg

Find bases for the column space and the null space of matrix A. You should verify that the Rank-Nullity Theorem holds. An equivalent echelon form of matrix A is given to make your work

$$
A=\left[\begin{array}{cccc}
1 & 0 & -4 & -3 \\
-2 & 1 & 13 & 5 \\
0 & 1 & 5 & -1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & -4 & -3 \\
0 & 1 & 5 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Basis for the column space of $A=\left[\begin{array}{ll}- \\ - &]\end{array}\right]\left[\begin{array}{l}- \\ - \\ -\end{array}\right]$ Basis for the null space of $A=\left[\begin{array}{l}- \\ - \\ -\end{array}\right]\left[\begin{array}{ll}- \\ - \\ - & \\ - & \end{array}\right]$
41. (1 pt) local/Library/UI/6a.pg

The null space for the matrix $\left[\begin{array}{ccc}2 & 0 & 5 \\ -1 & 6 & 2 \\ 4 & 4 & -1 \\ 5 & 1 & 0 \\ 4 & 1 & 1\end{array}\right]$
is \qquad
42. (1 pt) Library/Rochester/setLinearAlgebra23QuadraticForms/ur_la_23_1.pg
Write the matrix of the quadratic form
$Q(x)=-4 x_{1}^{2}+2 x_{2}^{2}-6 x_{3}^{2}-5 x_{1} x_{2}-9 x_{1} x_{3}-1 x_{2} x_{3}$. $A=\left[\begin{array}{lll}- & - & - \\ - & - & - \\ - & - & -\end{array}\right]$.
43. ($1 \mathbf{~ p t) ~ L i b r a r y / R o c h e s t e r / s e t L i n e a r A l g e b r a 2 3 Q u a d r a t i c F o r m s - ~}$ /ur_la_23_4.pg
If $A=\left[\begin{array}{cc}5 & 8 \\ 8 & -9\end{array}\right]$ and $Q(x)=x \cdot A x$, Then $Q\left(e_{1}\right)=-\quad$ and $Q\left(e_{2}\right)=$
44. (1 pt) Library/Rochester/setLinearAlgebra23QuadraticForms/ur_la_23_5.pg
If $A=\left[\begin{array}{ccc}7 & 9 & 7 \\ 9 & 5 & -9 \\ 7 & -9 & -9\end{array}\right]$ and $Q(x)=x \cdot A x$,
Then $Q\left(x_{1}, x_{2}, x_{3}\right)=_x_{1}^{2}+\ldots x_{2}^{2}+\ldots x_{3}^{2}+\ldots x_{1} x_{2}+\ldots$ $x_{1} x_{3}+\ldots x_{2} x_{3}$.

