\magnification 2000 \parindent 0pt \parskip 10pt \hsize 7.2truein \hoffset -0.3truein \vsize 10.3 truein \voffset -0.1truein \def\v{\vskip -7pt} 7.3: Orthogonal Diagonalization \v Equivalent Questions: \v $\bullet$ Given an $n \times n$ matrix, does there exist an orthonormal basis for $R^n$ consisting of eigenvectors of $A$? \v $\bullet$ Given an $n \times n$ matrix, does there exist an orthogonal matrix $P$ such that $P^{-1}AP$ = $P^TAP$ is a diagonal matrix? \v $\bullet$ Is $A$ symmetric? Defn: A matrix is {\bf symmetric} if $A = A^T$. Defn: An invertible matrix $P$ is {\bf orthogonal} if $P^{-1} = P^T$ \v Note $P$ is orthogonal if and only if the columns of $P$ are orthonormal. Defn: A matrix $A$ is {\bf orthogonally diagonalizable} if there exists an orthogonal matrix $P$ such that $P^{-1}AP = D$ where $D$ is a diagonal matrix. Thm 7.3.1: If $A$ is an $n \times n$ matrix, then the following are equivalent: \vskip -7pt \hskip 0.1in a.) $A$ is orthogonally diagonalizable. \vskip -7pt \hskip 0.1in b.) There exists an orthonormal basis for $R^n$ consisting of eigenvectors of $A$. \vskip -7pt \hskip 0.1in c.) $A$ is symmetric. Thm 7.3.2: If $A$ is a symmetric matrix, then: \vskip -7pt a.) The eigenvalues of $A$ are all real numbers. \vskip -7pt b.) Eigenvectors from different eigenspaces are orthogonal. To orthogonally diagonalize a symmetric matrix $A$: \vskip -5pt 1.) Find the eigenvalues of $A$. \centerline{Solve $det(A - \lambda I) = 0$ for $\lambda$.} \vskip -3pt 2.) Find a basis for each of the eigenspaces. \centerline{Solve $(A - \lambda_j I){\bf x}= 0$ for ${\bf x}$.} \vskip -3pt 3.) Use the Gram-Schmidt process to find an orthonormal basis for each eigenspace. \vskip -3pt 4.) Use the eigenvalues of $A$ to construct the diagonal matrix $D$, and use the orthonormal basis of the corresponding eigenspaces for the corresponding columns of $P$. \vskip -3pt 5.) Note $P^{-1} = P^T$ since the columns of $P$ are orthonormal. \end 8.1: 1 - 5 odd, 7, 9, 13, 17, 19, 21, 25, 29, 31, 35, 38, 44