5.3: Diagonalization

Note that multiplying diagonal matrices is easy:
Let $D=\left[\begin{array}{cc}10 & 0 \\ 0 & -1\end{array}\right]$. Then
$D^{2}=\left[\begin{array}{cc}10 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{cc}10 & 0 \\ 0 & -1\end{array}\right]=$
$D^{k}=$

Defn: The matrices A and B are similar if there exists an invertible matrix P such that $B=P^{-1} A P$.

Defn: A matrix A is diagonalizable if A is similar to a diagonal matrix.
I.e. A is diagonalizable if there exists an invertible matrix P such that $P^{-1} A P=D$ where D is a diagonal matrix.

Application: Calculating A^{k}.

$$
P^{-1} A P=D
$$

$k=1: A=$
$k=2: A^{2}=P D P^{-1} P D P^{-1}$
$k=3: A^{3}=P D P^{-1} P D P^{-1} P D P^{-1}$
Similarly $A^{k}=$
Example:
Let $D=\left[\begin{array}{cc}10 & 0 \\ 0 & -1\end{array}\right]$ and $A=\left[\begin{array}{cc}-1 & 0 \\ -55 & 10\end{array}\right]$
Then $\left[\begin{array}{rr}-1 & 0 \\ -55 & 10\end{array}\right]=\left[\begin{array}{rr}0 & 1 \\ -1 & 5\end{array}\right]\left[\begin{array}{cc}10 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{rr}5 & -1 \\ 1 & 0\end{array}\right]$

Thus, $A^{3}=$

Equivalent Questions:

- Given an $n \times n$ matrix, does there exist a basis for R^{n} consisting of eigenvectors of A ?
- Given an $n \times n$ matrix, does there exist an invertible matrix P such that $P^{-1} A P$ is a diagonal matrix?

Thm: Let A be an $n \times n$ matrix. The following are equivalent:
a.) A is diagonalizable.
b.) A has n linearly independent eigenvectors.
c.) There exists a basis for R^{n} consisting of eigenvectors of A.

Example: Suppose $A P=P D$ where

$$
P=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \text { and } D=\left[\begin{array}{ll}
5 & 0 \\
0 & 6
\end{array}\right]
$$

Then $P D=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{ll}5 & 0 \\ 0 & 6\end{array}\right]=$

Thus $A P=A\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]=$

Hence $A\left[\begin{array}{l}1 \\ 3\end{array}\right]=\quad$ and $A\left[\begin{array}{l}2 \\ 4\end{array}\right]=$
Thus an eigenvalue of $\mathrm{A}=\ldots$ with eigenvector

Another eigenvalue of $\mathrm{A}=$ ___ with eigenvector
Thus if $A P=P D$, then
if the diagonal entries of D are d_{1}, \ldots, d_{n}
and the $i^{\text {th }}$ column of P is an \qquad .

Note P is an invertible SQUARE matrix where columns P are __ of the matrix A

To diagonalize a matrix A :
1.) Find the eigenvalues of A. Solve $\operatorname{det}(\lambda I-A)=0$ for λ.
2.) Find a basis for each of the eigenspaces. Solve $\left(\lambda_{j} I-A\right) \mathbf{x}=0$ for \mathbf{x}.

Case 3a.) IF the geometric multiplicity is LESS then the algebraic multiplicity for at least ONE eigenvalue of A, then A is NOT diagonalizable. (Cannot find square matrix P).

Case 3b.) IF the geometric multiplicity equals the algebraic multiplicity for ALL the eigenvalues of A, then A is diagonalizable. Thus,

- Use the eigenvalues of A to construct the diagonal matrix D
- Use the basis of the corresponding eigenspaces for the corresponding columns of P. (NOTE: P is a SQUARE matrix).

NOTE: ORDER MATTERS.
Examples:
$A=\left[\begin{array}{cc}4 & 1 \\ 7 & -2\end{array}\right] \quad B=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 4\end{array}\right] \quad C=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 4 & 0 \\ 0 & 0 & 4\end{array}\right]$

Thm: Suppose $\lambda_{i}, i=1, \ldots, n$ are DISTINCT eigenvalues of a matrix A. If \mathcal{B}_{i} is a basis for the eigenspace corresponding to λ_{i}, then
$\mathcal{B}=\mathcal{B}_{1} \cup \ldots \cup \mathcal{B}_{n}$ is linearly independent.
Defn: Suppose the characteristic polynomial of A is

$$
\left(\lambda-\lambda_{1}\right)^{k_{1}}\left(\lambda-\lambda_{2}\right)^{k_{2}} \ldots\left(\lambda-\lambda_{n}\right)^{k_{n}}
$$

where the $\lambda_{i}, i=1, \ldots, n$ are DISTINCT. Then the algebraic multiplicity of λ_{i} is k_{i}.
That is the algebraic multiplicity of λ_{i} is the number of times that $\left(\lambda-\lambda_{i}\right)$ appears as a factor of the characteristic polynomial of A.

Defn: The geometric multiplicity of $\lambda_{i}=$ dimension of the eigenspace corresponding to λ_{i}.

Thm (Geometric and Algebraic Multiplicity):
a.) The geometric multiplicity is less than or equal to the algebraic multiplicity [That is, Nullity of $\left.\left(\lambda_{i} I-A\right) \leq k_{i}\right]$.
b.) A is diagonalizable if and only if the geometric multiplicity is equal to the algebraic multiplicity for every eigenvalue.

