\magnification 2000 \parindent 0pt \parskip 8pt \hsize 7.3truein \hoffset -0.3truein \vsize 10.3 truein 7.1: Eigenvalues and Eigenvectors Defn: $\lambda$ is an {\bf eigenvalue} of the linear transformation \hfil \break $T:V \rightarrow V$ if there exists a \underbar{nonzero} vector ${\bf x}$ in $V$ such that $T({\bf x}) = \lambda {\bf x}$. The vector ${\bf x}$ is said to be an {\bf eigenvector} corresponding to the eigenvalue $\lambda$. Example: Let $T({\bf x}) = \left[\matrix{4 & 1 \cr 5 & 0}\right] {\bf x}$. \vskip 10pt \hrule Note $\left[\matrix{4 & 1 \cr 5 & 0}\right] \left[\matrix{ -1 \cr ~~5 }\right] = \left[\matrix{ ~~1 \cr -5 }\right] = -1\left[\matrix{ -1 \cr ~~5 }\right]$ Thus -1 is an eigenvalue of $A$ and $\left[\matrix{ -1 \cr ~~5 }\right]$ is a corresponding eigenvector of $A$. \vskip 10pt \hrule Note $\left[\matrix{4 & 1 \cr 5 & 0}\right] \left[\matrix{ 1 \cr 1 }\right] = \left[\matrix{ 5 \cr 5 }\right] = 5\left[\matrix{ 1 \cr 1 }\right]$ Thus 5 is an eigenvalue of $A$ and $\left[\matrix{ 1 \cr 1 }\right]$ is a corresponding eigenvector of $A$. \vskip 10pt \hrule Note $\left[\matrix{4 & 1 \cr 5 & 0}\right] \left[\matrix{ 2 \cr 8 }\right] = \left[\matrix{ 16 \cr 10 }\right] \not= k\left[\matrix{ 2 \cr 8 }\right]$ for any $k$. Thus $\left[\matrix{ 2 \cr 8 }\right]$ is \underbar{NOT} an eigenvector of $A$. \eject MOTIVATION: Note $\left[\matrix{ 2 \cr 8 }\right] = \left[\matrix{ -1 \cr ~~5 }\right] + 3\left[\matrix{ 1 \cr 1 }\right]$ Thus $A\left[\matrix{ 2 \cr 8 }\right] = A(\left[\matrix{ -1 \cr ~~5 }\right] + 3\left[\matrix{ 1 \cr 1 }\right]) = A\left[\matrix{ -1 \cr ~~5 }\right] + 3A\left[\matrix{ 1 \cr 1 }\right]$ \vskip 5pt \rightline{$= -1\left[\matrix{ -1 \cr ~~5 }\right] + 3 \cdot 5\left[\matrix{ 1 \cr 1 }\right] = \left[\matrix{ 16 \cr 10 }\right] $} \vskip 30pt Finding eigenvalues: Suppose $A{\bf x} = \lambda {\bf x}$ ~~(Note $A$ is a SQUARE matrix). Then $A{\bf x} = \lambda I{\bf x}$ where $I$ is the identity matrix. Thus $\lambda I{\bf x} - A{\bf x} = (\lambda I - A){\bf x} = {\bf 0}$ Thus if $A{\bf x} = \lambda {\bf x}$ for a nonzero {\bf x}, then $(\lambda I- A){\bf x} = {\bf 0}$ has a nonzero solution. (mod 11/14) Thus $det(\lambda I - A){\bf x} = 0$. Note that the eigenvectors corresponding to $\lambda$ are the nonzero solutions of $(\lambda I - A){\bf x} = {\bf 0}$. \eject Thus to find the eigenvalues of $A$ and their corresponding eigenvectors: Step 1: Find eigenvalues: Solve the equation \vskip 4pt \centerline{$det(\lambda I - A) = 0$ for $\lambda$.} Step 2: For each eigenvalue $\lambda_0$, find its corresponding eigenvectors by solving the homogeneous system of equations \vskip 4pt \centerline{$(\lambda_0 I - A){\bf x} = 0$ for {\bf x}. (mod 11/15) } \vskip 5pt \hrule \vskip -3pt Defn: $det(\lambda I - A) = 0$ is the {\bf characteristic equation} of $A$. Thm 3: The eigenvalues of an upper triangular or lower triangular matrix (including diagonal matrices) are identical to its diagonal entries. \vskip 5pt \hrule \vskip -3pt Defn: The {\bf eigenspace} corresponding to an eigenvalue $\lambda_0$ of a matrix $A$ is the set of all solutions of $(\lambda_0 I - A){\bf x} = {\bf 0}$. (mod 11/15) \vfill Note: An eigenspace is a vector space \hskip 0.4in The vector {\bf 0} is always in the eigenspace. \hskip 0.4in The vector {\bf 0} is never an eigenvector. \hskip 0.4in The number 0 can be an eigenvalue. Thm 7.1.4: A square matrix is invertible if and only if $\lambda = 0$ is not an eigenvalue of $A$. Thm 7.1.3: If $A{\bf x} = \lambda{\bf x}$, then $A^k{\bf x} = \lambda^k{\bf x}$. ~~ That is, if~\break $\lambda$ is an eigenvalue of $A$ with corresponding eigenvector ${\bf x}$, then $\lambda^k$ is an eigenvalue of $A^k$ with corresponding eigenvector ${\bf x}$ where $k$ is any integer. \end