[8] 1.) Show that $<a_{0}+a_{1} t, b_{0}+b_{1} t>=b_{0}-a_{1} b_{1}$ is NOT an inner product on $P_{1}$.
$<1,2+3 t>=2-(0)(3)=2$
$<2+3 t, 1>=1-(3)(0)=1$.
Thus, $<1,2+3 t>\neq<2+3 t, 1>$.
Since this operation is not commutative, it is not an inner product.
Alternate answer:
$<2+3 t, 1>=1-(3)(0)=1$.
$<2,1>+<3 t, 1>=[1-(0)(0)]+[1-(3)(0)]=2$.
Thus, $<2+3 t, 1>\neq<2,1>+<3 t, 1>$, and thus this operation is not an inner product.
Alternate answer:
$5<1,2+3 t>=5(2-(0)(3))=10$
$<5(1), 2+3 t>=2-(0)(3)=2$
Thus, $5<1,2+3 t>\neq<5(1), 2+3 t>$, and thus this operation is not an inner product.
Alternate answer:
$<1+2 t, t>=0-(2)(1)=-2$. An inner product is never negative, and thus this operation is not an inner product.

Alternate answer:
$<1+t, 1+t>=1-(1)(1)=1$. But $1+t \neq 0$. Thus this operation is not an inner product.
2.) Let $P_{2}$ have the inner product $<a_{0}+a_{1} t+a_{2} t^{2}, b_{0}+b_{1} t+b_{2} t^{2}>=a_{0} b_{0}+a_{1} b_{1}+a_{2} b_{2}$
[4] 2a.) $\left\|3+10 t^{2}\right\|=\underline{\sqrt{109}}$
$<3+10 t^{2}, 3+10 t^{2}>=(3)(3)+(0)(0)+(10)(10)=109$.
$\left\|3+10 t^{2}\right\|=\sqrt{<3+10 t^{2}, 3+10 t^{2}>}=\sqrt{109}$
[4] 2b.) $<4-8 t+t^{2}, 3+t-4 t^{2}>=\underline{0}$
$<4-8 t+t^{2}, 3+t-4 t^{2}>=(4)(3)+(-8)(1)+(1)(-4)=0$
[2] 2c.) Is $4-8 t+t^{2}$ orthogonal to $3+t-4 t^{2} ? \underline{Y E S}$

