Math 2418 Linear Algebra Quiz #8 Nov 7-8, 2001

[8] 1.) Show that $\langle a_0 + a_1t, b_0 + b_1t \rangle = b_0 - a_1b_1$ is NOT an inner product on P_1 .

< 1, $2 + 3t \ge 2 - (0)(3) = 2$ < $2 + 3t, 1 \ge 1 - (3)(0) = 1$. Thus, < 1, $2 + 3t \ge 4 < 2 + 3t, 1 >$. Since this operation is not commutative, it is not an inner product.

Alternate answer: < 2 + 3t, 1 >= 1 - (3)(0) = 1. < 2, 1 > + < 3t, 1 >= [1 - (0)(0)] + [1 - (3)(0)] = 2.Thus, $< 2 + 3t, 1 > \neq < 2, 1 > + < 3t, 1 >$, and thus this operation is not an inner product.

Alternate answer: $5 < 1, 2 + 3t \ge 5(2 - (0)(3)) = 10$ $< 5(1), 2 + 3t \ge 2 - (0)(3) = 2$ Thus, $5 < 1, 2 + 3t \ge 4 < 5(1), 2 + 3t >$, and thus this operation is not an inner product.

Alternate answer: < 1 + 2t, t >= 0 - (2)(1) = -2. An inner product is never negative, and thus this operation is not an inner product.

Alternate answer: < 1 + t, 1 + t >= 1 - (1)(1) = 1. But $1 + t \neq 0$. Thus this operation is not an inner product.

2.) Let P_2 have the inner product $\langle a_0 + a_1t + a_2t^2, b_0 + b_1t + b_2t^2 \rangle = a_0b_0 + a_1b_1 + a_2b_2$ [4] 2a.) $||3 + 10t^2|| = \sqrt{109}$

 $< 3 + 10t^2, \ 3 + 10t^2 >= (3)(3) + (0)(0) + (10)(10) = 109.$ $||3 + 10t^2|| = \sqrt{< 3 + 10t^2, 3 + 10t^2 >} = \sqrt{109}$

[4] 2b.)
$$< 4 - 8t + t^2$$
, $3 + t - 4t^2 > = 0$

$$< 4 - 8t + t^2, \ 3 + t - 4t^2 >= (4)(3) + (-8)(1) + (1)(-4) = 0$$

[2] 2c.) Is $4 - 8t + t^2$ orthogonal to $3 + t - 4t^2$? <u>YES</u>