Math 2418 Linear Algebra Quiz \#6
Oct. 17-18, 2001
[10] 1.) Show that the line $\mathbf{x}=t\left[\begin{array}{l}4 \\ 8\end{array}\right]$ is a subspace of R^{2}.
A.) Show that if $\mathbf{v}, \mathbf{w} \in S$, then $\mathbf{v}+\mathbf{w} \in S$
$\mathbf{v} \in S$ implies $\mathbf{v}=t_{1}\left[\begin{array}{l}4 \\ 8\end{array}\right]$ for some real number t_{1}
$\mathbf{w} \in S$ implies $\mathbf{w}=t_{2}\left[\begin{array}{l}4 \\ 8\end{array}\right]$ for some real number t_{2}
$\mathbf{v}+\mathbf{w}=t_{1}\left[\begin{array}{l}4 \\ 8\end{array}\right]+t_{2}\left[\begin{array}{l}4 \\ 8\end{array}\right]=\left(t_{1}+t_{2}\right)\left[\begin{array}{l}4 \\ 8\end{array}\right]$
Thus $\mathbf{v}+\mathbf{w} \in S$
B.) Show that if $\mathbf{v} \in S$, then $c \mathbf{v} \in S$
$\mathbf{v} \in S$ implies $\mathbf{v}=t_{1}\left[\begin{array}{l}4 \\ 8\end{array}\right]$ for some real number t_{1}
$\mathbf{c v}=c\left(t_{1}\left[\begin{array}{l}4 \\ 8\end{array}\right]\right)=\left(c t_{1}\right)\left[\begin{array}{l}4 \\ 8\end{array}\right]$
Thus $\mathbf{c v} \in S$
Thus S is a subspace of R^{2}
$\left[\begin{array}{ll}10\end{array}\right.$ 2.) Write $\left[\begin{array}{r}5 \\ -4 \\ -5\end{array}\right]$ as a linear combination of $\left[\begin{array}{l}4 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$, and $\left[\begin{array}{l}6 \\ 5 \\ 8\end{array}\right]$
$\left[\begin{array}{rrrr}4 & 1 & 6 & 5 \\ 1 & 2 & 5 & -4 \\ 2 & 3 & 8 & -5\end{array}\right] \rightarrow\left[\begin{array}{rrrr}1 & 2 & 5 & -4 \\ 4 & 1 & 6 & 5 \\ 2 & 3 & 8 & -5\end{array}\right] \rightarrow\left[\begin{array}{cccc}1 & 2 & 5 & -4 \\ 0 & -7 & -14 & 21 \\ 0 & -1 & -2 & 3\end{array}\right] \rightarrow\left[\begin{array}{cccc}1 & 2 & 5 & -4 \\ 0 & -1 & -2 & 3 \\ 0 & -7 & -14 & 21\end{array}\right] \rightarrow$
$\left[\begin{array}{cccc}1 & 2 & 5 & -4 \\ 0 & -1 & -2 & 3 \\ 0 & 0 & 0 & 0\end{array}\right] \rightarrow \rightarrow\left[\begin{array}{cccc}1 & 0 & 1 & 2 \\ 0 & 1 & 2 & -3 \\ 0 & 0 & 0 & 0\end{array}\right]$
Thus $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}2-s \\ -3-2 s \\ s\end{array}\right]$
Let $s=0$
Answer 2.) $\left[\begin{array}{r}5 \\ -4 \\ -5\end{array}\right]=2\left[\begin{array}{l}4 \\ 1 \\ 2\end{array}\right]-3\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]+0\left[\begin{array}{l}6 \\ 5 \\ 8\end{array}\right]$

