Math 2418 Linear Algebra Quiz \#5
Oct. 10-11, 2001
[8] 1a.) Show that $T\left(\left(x_{1}, x_{2}\right)\right)=\left(x_{1}, x_{1}+x_{2}, 3 x_{1}-4 x_{2}\right)$ is linear by finding a matrix A such that $T(x)=A x$.
$A\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}x_{1} \\ x_{1}+x_{2} \\ 3 x_{1}-4 x_{2}\end{array}\right]$
$\left[\quad\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}x_{1} \\ x_{1}+x_{2} \\ 3 x_{1}-4 x_{2}\end{array}\right]\right.$
$\left[\begin{array}{rr}1 & 0 \\ 1 & 1 \\ 3 & -4\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}x_{1} \\ x_{1}+x_{2} \\ 3 x_{1}-4 x_{2}\end{array}\right]$

Answer 1a.) $A=\left[\begin{array}{rr}1 & 0 \\ 1 & 1 \\ 3 & -4\end{array}\right]$
[3] 1b.) The domain of T is $\underline{R^{2}}$.
[3] 1c.) The codomain of T is \underline{R}^{3}.
[3] 1d.) Is T one-to-one? yes
[3] 1e.) Is T onto? $\underline{n o}$

