Math 2418 Linear Algebra Quiz \#4 (OPEN BOOK, OPEN NOTES)
Sept. 20-21, 2001
[10] 1.) Prove by giving a specific counter-example that $\operatorname{det}(A+B) \neq \operatorname{det} A+\operatorname{det} B$.
$\operatorname{det}\left(\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]+\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]\right)=\operatorname{det}\left(\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]\right)=0$
$\operatorname{det}\left(\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\right)+\operatorname{det}\left(\left[\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right]\right)=1+1=2$.
Thus, $\operatorname{det}\left(\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]+\left[\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right]\right) \neq \operatorname{det}\left(\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\right)+\operatorname{det}\left(\left[\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right]\right)$
Note, this is only one possible answer. There are many other correct answers.
$[10]$ 2.) Let $A=\left[\begin{array}{rrr}3 & -2 & 1 \\ 5 & 6 & 2 \\ 1 & 0 & -3\end{array}\right]$. Suppose $A d j A=\left[\begin{array}{rcc}x & -6 & -18 \\ y & -10 & -1 \\ -6 & -2 & 28\end{array}\right]$.
Find x, y, and $\operatorname{det} A$, and use this information to find A^{-1}.
$A^{T}=\left[\begin{array}{rrr}3 & 5 & 1 \\ -2 & 6 & 0 \\ 1 & 2 & -3\end{array}\right]$.
$x=(-1)^{1+1} \operatorname{det}\left(\left[\begin{array}{rr}6 & 0 \\ 2 & -3\end{array}\right]\right)=-18$ and $y=(-1)^{2+1} \operatorname{det}\left(\left[\begin{array}{rr}5 & 1 \\ 2 & -3\end{array}\right]\right)=-(-15-2)=17$
$A=\left[\begin{array}{rrr}3 & -2 & 1 \\ 5 & 6 & 2 \\ 1 & 0 & -3\end{array}\right] \xrightarrow[R_{2}+3 R_{1}]{ }\left[\begin{array}{crr}3 & -2 & 1 \\ 14 & 0 & 5 \\ 1 & 0 & -3\end{array}\right]$
Thus $\operatorname{det} A=-(-2) \operatorname{det}\left(\left[\begin{array}{cr}14 & 5 \\ 1 & -3\end{array}\right]\right)=2[(14)(-3)-(1)(5)]=2[-42-5]=2[-47]=-94$
$A^{-1}=\frac{1}{\operatorname{det} A}(\operatorname{adj} A)$

Answer 2.) $x=-18, y=17, \operatorname{det} A=-94, A^{-1}=\left[\begin{array}{ccc}\frac{18}{94} & \frac{6}{94} & \frac{18}{94} \\ -\frac{17}{94} & \frac{10}{94} & \frac{1}{94} \\ \frac{6}{94} & \frac{2}{94} & -\frac{28}{94}\end{array}\right]$.

