1.) True or False
A.) If A is a square matrix, $A x=b$ has a unique solution.
B.) If A is an invertible square matrix, $A x=b$ has a unique solution.
C.) If a square matrix A is not invertible, then $A x=b$ cannot have a unique solution.
D.) If A is not invertible, then $A x=b$ cannot have a unique solution.

F
2.) Suppose $\left[\begin{array}{rrr}2 & 3 & 4 \\ 6 & 10 & 17 \\ 10 & 15 & 24\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 3 & 1 & 0 \\ 5 & 0 & 1\end{array}\right]\left[\begin{array}{lll}2 & 3 & 4 \\ 0 & 1 & 5 \\ 0 & 0 & 4\end{array}\right]$.

Use LU factorization to solve:

$$
\begin{gathered}
2 x_{1}+3 x_{2}+4 x_{3}=2 \\
6 x_{1}+10 x_{2}+17 x_{3}=16 \\
10 x_{1}+15 x_{2}+24 x_{3}=14
\end{gathered}
$$

Goal: Solve $A x=L(U x)=b$ for $x . \quad L(U x)=b$. Let $U x=y$. Then $L y=b$.
Step 1: Solve $L y=b$ for y.

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 2 \\
3 & 1 & 0 & 16 \\
5 & 0 & 1 & 14
\end{array}\right] \overrightarrow{R_{2}-3 R_{1}, R_{3}-5 R_{1}}\left[\begin{array}{cccc}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 10 \\
0 & 0 & 1 & 4
\end{array}\right] . \text { Thus } y_{1}=2, y_{2}=10, y_{3}=4
$$

Step 2: Solve $U x=y$ for x.

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
2 & 3 & 4 & 2 \\
0 & 1 & 5 & 10 \\
0 & 0 & 4 & 4
\end{array}\right] \xrightarrow[\frac{R_{3}}{4}]{ }\left[\begin{array}{cccc}
2 & 3 & 4 & 2 \\
0 & 1 & 5 & 10 \\
0 & 0 & 1 & 1
\end{array}\right] \xrightarrow[R_{1}-4 R_{3}, R_{2}-5 R_{3}]{ }\left[\begin{array}{cccc}
2 & 3 & 0 & -2 \\
0 & 1 & 0 & 5 \\
0 & 0 & 1 & 1
\end{array}\right]} \\
& \xrightarrow[R_{1}-3 R_{2}]{ }\left[\begin{array}{ccccc}
2 & 0 & 0 & -17 \\
0 & 1 & 0 & 5 \\
0 & 0 & 1 & 1
\end{array}\right] \xrightarrow[\frac{R_{1}}{2}]{ }\left[\begin{array}{cccc}
1 & 0 & 0 & -\frac{17}{2} \\
0 & 1 & 0 & 5 \\
0 & 0 & 1 & 1
\end{array}\right]
\end{aligned}
$$

Answer: 2.) $x_{1}=-\frac{17}{2}, x_{2}=5, x_{3}=1$

Check: $2\left(-\frac{17}{2}\right)+3(5)+4(1)=2$

$$
\begin{gathered}
6\left(-\frac{17}{2}\right)+10(5)+17(1)=16 \\
10\left(-\frac{17}{2}\right)+15(5)+24(1)=14
\end{gathered}
$$

