[14] 1.) $\operatorname{det}\left[\begin{array}{cccc}4 & 8 & 3 & 4 \\ 5 & 0 & 10 & 4 \\ 2 & 4 & 3 & 1 \\ 2 & 0 & 2 & 1\end{array}\right]=$
[6] 2a.) The orthogonal projection of the vector $(4,5)$ onto the vector $(1,2)$ is \qquad
[6] 2b.) The orthogonal component of the vector $(4,5)$ orthogonal to $(1,2)$ is \qquad
[12] 3.) Solve each of the following system of linear equations by using Gauss-Jordan elimination.
3a.) $\quad x_{2}+3 x_{3}=1$
$3 x_{1}+2 x_{2}=0$
$6 x_{1}+5 x_{2}+3 x_{3}=1$
3b.)
$x_{2}+3 x_{3}=1$
$3 x_{1}+2 x_{2}=0$
$6 x_{1}+5 x_{2}+3 x_{3}=0$

Answer 3a.)
3b.) \qquad
[2] 3c.) If $\mathrm{A}=$ coefficient matrix in 1a, does A^{-1} exist? \qquad
[2] 3d.) If $\mathrm{A}=$ coefficient matrix in 1a, $\operatorname{det} A=$ \qquad
[1] 3d.) The answer to 1 a is a hyperplane that lives in R^{m} where $m=$ \qquad .
[1] 3e.) The dimension of the hyperplane in 1 a is \qquad .
[5] 3f.) An equation of the hyperplane in 1a in point-parallel vector form is
[3] 3g.) Using different numbers, an equivalent equation of the hyperplane in 1a in point-parallel vector form is

Name:
Circle one: Wednesday/Thursday
[20] 4.) Find and use an LU factorization to solve:

$$
\left[\begin{array}{ll}
4 & 8 \\
3 & 7
\end{array}\right] \mathbf{x}=\left[\begin{array}{l}
4 \\
0
\end{array}\right]
$$

Answer: $\underline{L=}$
$U=$
$\underline{x}=$
5.) Circle T for True or F for False.
[3] a.) Suppose a homogeneous system of 3 linear equations with 2 unknowns has exactly one solution, then any system with the same coefficients will also have exactly one solution. T F
[3] b.) Suppose a homogeneous system of 3 linear equations with 3 unknowns has exactly one solution, then any system with the same coefficients will also have exactly one solution. T F
$[10]$ 6.) Suppose $\left[\begin{array}{lll}1 & 5 & 2 \\ 0 & 1 & 0 \\ 1 & 0 & 3\end{array}\right]\left[\begin{array}{rrr}3 & -15 & -2 \\ 0 & 1 & 0 \\ -1 & 5 & 1\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$.
Solve the following system of equations using the method of inverses: $3 x_{1}-15 x_{2}-2 x_{3}=10$

$$
x_{2} \quad=0
$$

$$
-x_{1}+5 x_{2}+x_{3}=2
$$

Answer 6.)

[5] 7a.) Given the line $x_{1}=3+2 t, x_{2}=1+t, x_{3}=5+4 t$, then
a point on the line is \qquad and a vector describing the direction of the line is \qquad .
[5] 7b.) A vector perpendicular to $(1,4,0)$ and $(5,1,2)$ is \qquad .
[5] 7c.) Find an equation for the plane in point-parallel form that contains the line $x_{1}=3+2 t, x_{2}=1+t, x_{3}=5+4 t$ and is parallel to the line of intersection of the planes $x_{1}+4 x_{2}+1=0$ and $5 x_{1}+x_{2}+2 x_{3}=0$ (Hint: use the point in 7 a and the vectors in 7 a and 7 b .

Answer 7c.)

