Math 2418 Linear Algebra Exam #1SHOW ALL WORK Oct 1, 2001

Name: Circle one: Wednesday/Thursday

[6] 2a.) The orthogonal projection of the vector (4, 5) onto the vector (1, 2) is _____

[6] 2b.) The orthogonal component of the vector (4, 5) orthogonal to (1, 2) is _____

Name: $\frac{}{\text{Circle one: Wednesday/Thursday}}$

[12] 3.) Solve each of the following system of linear equations by using Gauss-Jordan elimination.

3a.)	$x_2 + 3x_3 = 1$	3b.)	$x_2 + 3x_3 = 1$
	$3x_1 + 2x_2 = 0$		$3x_1 + 2x_2 = 0$
	$6x_1 + 5x_2 + 3x_3 = 1$		$6x_1 + 5x_2 + 3x_3 = 0$

Answer 3a.) _____ 3b.) _____ [2] 3c.) If A = coefficient matrix in 1a, does A^{-1} exist? 3d.) If A = coefficient matrix in 1a, det A =[2]

- 3d.) The answer to 1a is a hyperplane that lives in \mathbb{R}^m where m =_____. [1]
- 3e.) The dimension of the hyperplane in 1a is _____. [1]
- [5] 3f.) An equation of the hyperplane in 1a in point-parallel vector form is

[3] 3g.) Using different numbers, an equivalent equation of the hyperplane in 1a in point-parallel vector form is

Name: <u>Circle one: Wednesday/Thursday</u>

[20] 4.) Find and use an LU factorization to solve:

$$\begin{bmatrix} 4 & 8 \\ 3 & 7 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 4 \\ 0 \end{bmatrix}$$

Answer: $\underline{L} =$

U =

 $\underline{\mathbf{x}} =$

5.) Circle T for True or F for False.

[3] a.) Suppose a homogeneous system of 3 linear equations with 2 unknowns has exactly one solution, then any system with the same coefficients will also have exactly one solution. T F

[3] b.) Suppose a homogeneous system of 3 linear equations with 3 unknowns has exactly one solution, then any system with the same coefficients will also have exactly one solution. T \mathbf{F}

Name: Circle one: Wednesday/Thursday

[10] 6.) Suppose
$$\begin{bmatrix} 1 & 5 & 2 \\ 0 & 1 & 0 \\ 1 & 0 & 3 \end{bmatrix} \begin{bmatrix} 3 & -15 & -2 \\ 0 & 1 & 0 \\ -1 & 5 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Solve the following system of equations using the method of inverses: $3x_1 - 15x_2 - 2x_3 = 10$ $x_2 = 0$ $-x_1 + 5x_2 + x_3 = 2$

[5] 7b.) A vector perpendicular to (1, 4, 0) and (5, 1, 2) is _____.

[5] 7c.) Find an equation for the plane in point-parallel form that contains the line $x_1 = 3 + 2t, x_2 = 1 + t, x_3 = 5 + 4t$ and is parallel to the line of intersection of the planes $x_1 + 4x_2 + 1 = 0$ and $5x_1 + x_2 + 2x_3 = 0$ (Hint: use the point in 7a and the vectors in 7a and 7b.

Answer 7c.)