Math 2418 Linear Algebra Exam \#1
Name:
[14] 1.) $\operatorname{det}\left[\begin{array}{cccc}4 & 8 & 3 & 4 \\ 5 & 0 & 10 & 4 \\ 2 & 4 & 3 & 1 \\ 2 & 0 & 2 & 1\end{array}\right]=\underline{116}$
$\operatorname{det}\left[\begin{array}{cccc}4 & 8 & 3 & 4 \\ 5 & 0 & 10 & 4 \\ 2 & 4 & 3 & 1 \\ 2 & 0 & 2 & 1\end{array}\right]=\operatorname{det}\left[\begin{array}{cccc}0 & 0 & -3 & 2 \\ 5 & 0 & 10 & 4 \\ 2 & 4 & 3 & 1 \\ 2 & 0 & 2 & 1\end{array}\right]=-4 \operatorname{det}\left[\begin{array}{ccc}0 & -3 & 2 \\ 5 & 10 & 4 \\ 2 & 2 & 1\end{array}\right]$
$=-4\left[-(-3) \operatorname{det}\left[\begin{array}{ll}5 & 4 \\ 2 & 1\end{array}\right]+2 \operatorname{det}\left[\begin{array}{cc}5 & 10 \\ 2 & 2\end{array}\right]\right]$
$=-4[-(-3)(5-8)+2(10-20)]=-4[-(-3)(-3)+2(-10)]=-4[-9-20]=-4[-29]=116$
[6] 2a.) The orthogonal projection of the vector $(4,5)$ onto the vector $(1,2)$ is $\underline{\left(\frac{14}{5}, \frac{28}{5}\right)}$
$(4,5) \cdot(1,2)=4+10=14$
$(1,2) \cdot(1,2)=1+4=5$
$\operatorname{proj}_{a} u=\frac{14}{5}(1,2)=\left(\frac{14}{5}, \frac{28}{5}\right)$
[6] 2b.) The orthogonal component of the vector $(4,5)$ orthogonal to $(1,2)$ is $\left(\frac{6}{5}, \frac{-3}{5}\right)$ $(4,5)-\left(\frac{14}{5}, \frac{28}{5}\right)=\left(\frac{6}{5}, \frac{-3}{5}\right)$
[12] 3.) Solve each of the following system of linear equations by using Gauss-Jordan elimination.

$$
\begin{aligned}
& \text { 3a.) } \quad x_{2}+3 x_{3}=1 \\
& 3 x_{1}+2 x_{2}=0 \\
& 6 x_{1}+5 x_{2}+3 x_{3}=1 \\
& \text { 3b.) } \quad x_{2}+3 x_{3}=1 \\
& 3 x_{1}+2 x_{2}=0 \\
& 6 x_{1}+5 x_{2}+3 x_{3}=0 \\
& {\left[\begin{array}{lllll}
0 & 1 & 3 & 1 & 1 \\
3 & 2 & 0 & 0 & 0 \\
6 & 5 & 3 & 1 & 0
\end{array}\right] \xrightarrow[R_{1} \leftrightarrow R_{2}]{ }\left[\begin{array}{ccccc}
3 & 2 & 0 & 0 & 0 \\
0 & 1 & 3 & 1 & 1 \\
6 & 5 & 3 & 1 & 0
\end{array}\right] \xrightarrow[R_{3}-2 R_{1} \rightarrow R_{3}]{ }\left[\begin{array}{ccccc}
3 & 2 & 0 & 0 & 0 \\
0 & 1 & 3 & 1 & 1 \\
0 & 1 & 3 & 1 & 0
\end{array}\right] \overrightarrow{R_{3}-R_{2} \rightarrow R_{3}}} \\
& \left.\left[\begin{array}{ccccc}
3 & 2 & 0 & 0 & 0 \\
0 & 1 & 3 & 1 & 1 \\
0 & 0 & 0 & 0 & -1
\end{array}\right] \xrightarrow[R_{1}-2 R_{2} \rightarrow R_{1}]{ }\left[\begin{array}{ccccc}
3 & 0 & -6 & -2 & -2 \\
0 & 1 & 3 & 1 & 1 \\
0 & 0 & 0 & 0 & -1
\end{array}\right] \xrightarrow{R_{1}} \rightarrow R_{1}\left[\begin{array}{ccccc}
1 & 0 & -2 & -\frac{2}{3} & -\frac{2}{3} \\
0 & 1 & 3 & 1 & 1 \\
0 & 0 & 0 & 0 & -1
\end{array}\right]\right]
\end{aligned}
$$

Answer 3a.) $\underline{x_{1}=-\frac{2}{3}+2 t, x_{2}=1-3 t, x_{3}=t}$
3b.) no solution
[2] 3c.) If $\mathrm{A}=$ coefficient matrix in 1a, does A^{-1} exist? $\underline{N O}$
[2] 3 d .) If $\mathrm{A}=$ coefficient matrix in 1a, $\operatorname{det} A=\underline{0}$
[1] 3d.) The answer to 1 a is a hyperplane that lives in R^{m} where $m=\underline{3}$.
[1] 3e.) The dimension of the hyperplane in 1 a is $\underline{1}$.
[5] 3f.) An equation of the hyperplane in 1a in point-parallel vector form is

$$
\mathbf{x}=\left(-\frac{2}{3}, 1,0\right)+t(2,-3,1)
$$

[3] 3g.) Using different numbers, an equivalent equation of the hyperplane in 1a in point-parallel vector form is

$$
\mathbf{x}=\left(0,0, \frac{1}{3}\right)+t(6,-9,3)
$$

Note many other answers are possible. I multiplied $(2,-3,1)$ by 3 to get the vector $(6,-9,3)$ which also describes the direction of this line. Any scalar multiple (except 0) of $(2,-3,1)$ would also describe the direction of this line. I set $t=\frac{1}{3}$ to find that $\left(0,0, \frac{1}{3}\right)$ is a point on this line. Any other point on this line could also be used (can choose any value for t to find another point on this line).
[20] 4.) Find and use an LU factorization to solve:

$$
\begin{gathered}
{\left[\begin{array}{ll}
4 & 8 \\
3 & 7
\end{array}\right] \mathbf{x}=\left[\begin{array}{l}
4 \\
0
\end{array}\right]} \\
{\left[\begin{array}{ll}
4 & 8 \\
3 & 7
\end{array}\right] \overrightarrow{\frac{R_{1}}{4} \rightarrow R_{1}}\left[\begin{array}{ll}
1 & 2 \\
3 & 7
\end{array}\right] \overrightarrow{R_{2}-3 R_{1} \rightarrow R_{2}}\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]}
\end{gathered}
$$

Thus $U=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$ and $L=\left[\begin{array}{ll}4 & 0 \\ 3 & 1\end{array}\right]$. Check $L U=\left[\begin{array}{ll}4 & 0 \\ 3 & 1\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}4 & 8 \\ 3 & 7\end{array}\right]$
Solve $L(U x)=b$. Let $U x=y$. Then 1) Solve $L y=b$ for y and 2) Solve $U x=y$ for x.
Step 1) Solve $L y=b$ for y

$$
\left[\begin{array}{lll}
4 & 0 & 4 \\
3 & 1 & 0
\end{array}\right] \overrightarrow{R_{1}} 4 R_{1}\left[\begin{array}{lll}
1 & 0 & 1 \\
3 & 1 & 0
\end{array}\right] \overrightarrow{R_{2}-3 R_{1} \rightarrow R_{2}}\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -3
\end{array}\right]
$$

Thus $y=(1,-3)$
Step 2) Solve $U x=y$ for x.
$\left[\begin{array}{ccc}1 & 2 & 1 \\ 0 & 1 & -3\end{array}\right] \overrightarrow{R_{1}-2 R_{1} \rightarrow R_{1}}\left[\begin{array}{ccc}1 & 0 & 7 \\ 0 & 1 & -3\end{array}\right]$
Thus $x=(7,-3)$
Check $\left[\begin{array}{ll}4 & 8 \\ 3 & 7\end{array}\right]\left[\begin{array}{c}7 \\ -3\end{array}\right]=\left[\begin{array}{l}4 \\ 0\end{array}\right]$

Answer: $L=\left[\begin{array}{ll}4 & 0 \\ 3 & 1\end{array}\right]$

$$
U=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]
$$

$$
\underline{x}=(7,-3)
$$

5.) Circle T for True or F for False.
[3] a.) Suppose a homogeneous system of 3 linear equations with 2 unknowns has exactly one solution, then any system with the same coefficients will also have exactly one solution.
[3] b.) Suppose a homogeneous system of 3 linear equations with 3 unknowns has exactly one solution, then any system with the same coefficients will also have exactly one solution.
[10] 6.) Suppose $\left[\begin{array}{lll}1 & 5 & 2 \\ 0 & 1 & 0 \\ 1 & 0 & 3\end{array}\right]\left[\begin{array}{rrr}3 & -15 & -2 \\ 0 & 1 & 0 \\ -1 & 5 & 1\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$.
Solve the following system of equations using the method of inverses: $3 x_{1}-15 x_{2}-2 x_{3}=10$ $x_{2}=0$ $-x_{1}+5 x_{2}+x_{3}=2$
Solve $\left[\begin{array}{rrr}3 & -15 & -2 \\ 0 & 1 & 0 \\ -1 & 5 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}10 \\ 0 \\ 2\end{array}\right]$
$A x=b$ implies $A^{-1} A x=A^{-1} b$. Thus $x=A^{-1} b$.

$$
\left[\begin{array}{lll}
1 & 5 & 2 \\
0 & 1 & 0 \\
1 & 0 & 3
\end{array}\right]\left[\begin{array}{c}
10 \\
0 \\
2
\end{array}\right]=\left[\begin{array}{c}
14 \\
0 \\
16
\end{array}\right]
$$

Answer 6.) $(14,0,16)$
[5] 7a.) Given the line $x_{1}=3+2 t, x_{2}=1+t, x_{3}=5+4 t$, then $\mathbf{x}=(3,1,5)+t(2,1,4)$ and a point on the line is $\underline{(3,1,5)}$ and a vector describing the direction of the line is $(2,1,4)$.
[5] 7b.) A vector perpendicular to $(1,4,0)$ and $(5,1,2)$ is $(8,-2,-19)$.

$$
\operatorname{det}\left[\begin{array}{lll}
i & j & k \\
1 & 4 & 0 \\
5 & 1 & 2
\end{array}\right]=i(8-0)-j(2-0)+k(1-20)=8 i-2 j-19 k=(8,-2,-19)
$$

[5] 7c.) Find an equation for the plane in point-parallel form that contains the line $x_{1}=3+2 t, x_{2}=1+t, x_{3}=5+4 t$ and is parallel to the line of intersection of the planes $x_{1}+4 x_{2}+1=0$ and $5 x_{1}+x_{3}+2 x_{3}=0$ (Hint: use the point in 7 a and the vectors in 7 a and 7 b .

Answer 7c.) $\underline{\mathbf{x}=(3,1,5)+t(2,1,4)+s(8,-2,-19)}$.
Alternate method:

$$
\left[\begin{array}{cccc}
1 & 4 & 0 & -1 \\
5 & 1 & 2 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 4 & 0 & -1 \\
0 & -19 & 2 & 5
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 4 & 0 & -1 \\
0 & 1 & -\frac{2}{19} & -\frac{5}{19}
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & \frac{8}{19} & \frac{1}{19} \\
0 & 1 & -\frac{2}{19} & -\frac{5}{19}
\end{array}\right]
$$

Thus in parametric form, the line of intersection of the planes $x_{1}+4 x_{2}+1=0$ and $5 x_{1}+x_{3}+2 x_{3}=$ 0 is $x_{1}=\frac{1}{19}-\frac{8}{19} t, x_{2}=-\frac{5}{19}+\frac{2}{19} t, x_{3}=t$.
In point parallel vector form: $\mathbf{x}=\left(\frac{1}{19},-\frac{5}{19}, 0\right)+t\left(-\frac{8}{19}, \frac{2}{19}, 1\right)$
Thus $\left(-\frac{8}{19}, \frac{2}{19}, 1\right)$ is a vector describing the direction of this line.

