Math 2418 Linear Algebra Exam \#1
Name:
Oct 1, 2001
SHOW ALL WORK
[14] 1.) $\operatorname{det}\left[\begin{array}{cccc}4 & 8 & 3 & 4 \\ 5 & 0 & 10 & 4 \\ 2 & 4 & 3 & 1 \\ 3 & 0 & 2 & 1\end{array}\right]=\underline{244}$
$\operatorname{det}\left[\begin{array}{cccc}4 & 8 & 3 & 4 \\ 5 & 0 & 10 & 4 \\ 2 & 4 & 3 & 1 \\ 3 & 0 & 2 & 1\end{array}\right]=\operatorname{det}\left[\begin{array}{cccc}0 & 0 & -3 & 2 \\ 5 & 0 & 10 & 4 \\ 2 & 4 & 3 & 1 \\ 3 & 0 & 2 & 1\end{array}\right]=-4 \operatorname{det}\left[\begin{array}{ccc}0 & -3 & 2 \\ 5 & 10 & 4 \\ 3 & 2 & 1\end{array}\right]$
$=-4\left[-(-3) \operatorname{det}\left[\begin{array}{ll}5 & 4 \\ 3 & 1\end{array}\right]+2 \operatorname{det}\left[\begin{array}{cc}5 & 10 \\ 3 & 2\end{array}\right]\right]$
$=-4[-(-3)(5-12)+2(10-30)]=-4[-(-3)[-7]+2(-20)]=-4[-21-40]=-4[-61]=244$
[6] 2a.) The orthogonal projection of the vector $(3,5)$ onto the vector $(1,2)$ is $\left(\frac{13}{5}, \frac{26}{5}\right)$
$(3,5) \cdot(1,2)=3+10=13$
$(1,2) \cdot(1,2)=1+4=5$
$\operatorname{proj}_{a} u=\frac{13}{5}(1,2)=\left(\frac{13}{5}, \frac{26}{5}\right)$
[6] 2b.) The orthogonal component of the vector $(3,5)$ orthogonal to $(1,2)$ is $\left(\frac{2}{5}, \frac{-1}{5}\right)$ $(3,5)-\left(\frac{13}{5}, \frac{26}{5}\right)=\left(\frac{2}{5}, \frac{-1}{5}\right)$
[12] 3.) Solve each of the following system of linear equations by using Gauss-Jordan elimination.

$$
\begin{aligned}
& \text { 3a.) } \quad x_{2}+4 x_{3}=1 \\
& 3 x_{1}+2 x_{2}=0 \\
& 6 x_{1}+5 x_{2}+4 x_{3}=1 \\
& \text { 3b.) } \quad x_{2}+4 x_{3}=1 \\
& 3 x_{1}+2 x_{2}=0 \\
& 6 x_{1}+5 x_{2}+4 x_{3}=0 \\
& \left.\left[\begin{array}{lllll}
0 & 1 & 4 & 1 & 1 \\
3 & 2 & 0 & 0 & 0 \\
6 & 5 & 4 & 1 & 0
\end{array}\right] \overrightarrow{R_{1} \leftrightarrow R_{2}}\left[\begin{array}{ccccc}
3 & 2 & 0 & 0 & 0 \\
0 & 1 & 4 & 1 & 1 \\
6 & 5 & 4 & 1 & 0
\end{array}\right] \overrightarrow{R_{3}-2 R_{1} \rightarrow R_{3}}\left[\begin{array}{ccccc}
3 & 2 & 0 & 0 & 0 \\
0 & 1 & 4 & 1 & 1 \\
0 & 1 & 4 & 1 & 0
\end{array}\right] \overrightarrow{R_{3}-R_{2} \rightarrow R_{3}}\right] \\
& \left.\left[\begin{array}{ccccc}
3 & 2 & 0 & 0 & 0 \\
0 & 1 & 4 & 1 & 1 \\
0 & 0 & 0 & 0 & -1
\end{array}\right] \xrightarrow[R_{1}-2 R_{2} \rightarrow R_{1}]{ }\left[\begin{array}{ccccc}
3 & 0 & -8 & -2 & -2 \\
0 & 1 & 4 & 1 & 1 \\
0 & 0 & 0 & 0 & -1
\end{array}\right] \xrightarrow{R_{1}} \rightarrow \xrightarrow{3}\left[\begin{array}{ccccc}
1 & 0 & -\frac{8}{3} & -\frac{2}{3} & -\frac{2}{3} \\
0 & 1 & 4 & 1 & 1 \\
0 & 0 & 0 & 0 & -1
\end{array}\right]\right]
\end{aligned}
$$

Answer 3a.) $\underline{x_{1}=-\frac{2}{3}+\frac{8}{3} t, x_{2}=1-4 t, x_{3}=t}$
3b.) no solution
[2] 3c.) If $\mathrm{A}=$ coefficient matrix in 1a, does A^{-1} exist? $\underline{N O}$
[2] 3d.) If $\mathrm{A}=$ coefficient matrix in 1a, $\operatorname{det} A=\underline{0}$
[1] 3d.) The answer to 1 a is a hyperplane that lives in R^{m} where $m=\underline{3}$.
[1] 3e.) The dimension of the hyperplane in 1 a is 1 .
[5] 3f.) An equation of the hyperplane in 1a in point-parallel vector form is

$$
\mathbf{x}=\left(-\frac{2}{3}, 1,0\right)+t\left(\frac{8}{3},-4,1\right)
$$

[3] 3g.) Using different numbers, an equivalent equation of the hyperplane in 1a in point-parallel vector form is

$$
\mathbf{x}=(10,-15,4)+t(8,-12,3)
$$

Note many other answers are possible. I multiplied $\left(\frac{8}{3},-4,1\right)$ by 3 to get the vector $(8,-12,3)$ which also describes the direction of this line. Any scalar multiple (except 0) of $\left(\frac{8}{3},-4,1\right)$ would also describe the direction of this line. I set $t=4$ to find that $(10,-15,4)$ is a point on this line. Any other point on this line could also be used (can choose any value for t to find another point on this line).
[20] 4.) Find and use an LU factorization to solve:

$$
\begin{gathered}
{\left[\begin{array}{ll}
4 & 8 \\
3 & 7
\end{array}\right] \mathbf{x}=\left[\begin{array}{l}
4 \\
0
\end{array}\right]} \\
{\left[\begin{array}{ll}
4 & 8 \\
3 & 7
\end{array}\right] \overrightarrow{\frac{R_{1}}{4} \rightarrow R_{1}}\left[\begin{array}{ll}
1 & 2 \\
3 & 7
\end{array}\right] \overrightarrow{R_{2}-3 R_{1} \rightarrow R_{2}}\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]}
\end{gathered}
$$

Thus $U=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$ and $L=\left[\begin{array}{ll}4 & 0 \\ 3 & 1\end{array}\right]$. Check $L U=\left[\begin{array}{ll}4 & 0 \\ 3 & 1\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}4 & 8 \\ 3 & 7\end{array}\right]$
Solve $L(U x)=b$. Let $U x=y$. Then 1) Solve $L y=b$ for y and 2) Solve $U x=y$ for x.
Step 1) Solve $L y=b$ for y

$$
\left[\begin{array}{lll}
4 & 0 & 4 \\
3 & 1 & 0
\end{array}\right] \overrightarrow{R_{1}} 4 R_{1}\left[\begin{array}{lll}
1 & 0 & 1 \\
3 & 1 & 0
\end{array}\right] \overrightarrow{R_{2}-3 R_{1} \rightarrow R_{2}}\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -3
\end{array}\right]
$$

Thus $y=(1,-3)$
Step 2) Solve $U x=y$ for x.
$\left[\begin{array}{ccc}1 & 2 & 1 \\ 0 & 1 & -3\end{array}\right] \overrightarrow{R_{1}-2 R_{1} \rightarrow R_{1}}\left[\begin{array}{ccc}1 & 0 & 7 \\ 0 & 1 & -3\end{array}\right]$
Thus $x=(7,-3)$
Check $\left[\begin{array}{ll}4 & 8 \\ 3 & 7\end{array}\right]\left[\begin{array}{c}7 \\ -3\end{array}\right]=\left[\begin{array}{l}4 \\ 0\end{array}\right]$

Answer: $L=\left[\begin{array}{ll}4 & 0 \\ 3 & 1\end{array}\right]$

$$
U=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]
$$

$$
\underline{x}=(7,-3)
$$

5.) Circle T for True or F for False.
[3] a.) Suppose a homogeneous system of 3 linear equations with 2 unknowns has exactly one solution, then any system with the same coefficients will also have exactly one solution.
[3] b.) Suppose a homogeneous system of 3 linear equations with 3 unknowns has exactly one solution, then any system with the same coefficients will also have exactly one solution.
[10] 6.) Suppose $\left[\begin{array}{lll}1 & 5 & 2 \\ 0 & 1 & 0 \\ 1 & 0 & 3\end{array}\right]\left[\begin{array}{rrr}3 & -15 & -2 \\ 0 & 1 & 0 \\ -1 & 5 & 1\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$.
Solve the following system of equations using the method of inverses: $3 x_{1}-15 x_{2}-2 x_{3}=10$ $x_{2}=0$ $-x_{1}+5 x_{2}+x_{3}=2$
Solve $\left[\begin{array}{rrr}3 & -15 & -2 \\ 0 & 1 & 0 \\ -1 & 5 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}10 \\ 0 \\ 2\end{array}\right]$
$A x=b$ implies $A^{-1} A x=A^{-1} b$. Thus $x=A^{-1} b$.

$$
\left[\begin{array}{lll}
1 & 5 & 2 \\
0 & 1 & 0 \\
1 & 0 & 3
\end{array}\right]\left[\begin{array}{c}
10 \\
0 \\
2
\end{array}\right]=\left[\begin{array}{c}
14 \\
0 \\
16
\end{array}\right]
$$

Answer 6.) $(14,0,16)$
[5] 7a.) Given the line $x_{1}=3+5 t, x_{2}=1+t, x_{3}=4+2 t$, then $\mathbf{x}=(3,1,4)+t(5,1,2)$ and a point on the line is $\underline{(3,1,4)}$ and a vector describing the direction of the line is $(5,1,2)$.
[5] 7b.) A vector perpendicular to $(1,4,0)$ and $(5,2,1)$ is $(4,-1,-18)$.

$$
\operatorname{det}\left[\begin{array}{lll}
i & j & k \\
1 & 4 & 0 \\
5 & 2 & 1
\end{array}\right]=i(4-0)-j(1-0)+k(2-20)=4 i-j-18 k=(4,-1,-18)
$$

[5] 7c.) Find an equation for the plane in point-parallel form that contains the line $x_{1}=3+5 t, x_{2}=1+t, x_{3}=4+2 t$ and is parallel to the line of intersection of the planes $x_{1}+4 x_{2}+1=0$ and $5 x_{1}+2 x_{3}+x_{3}=0$ (Hint: use the point in 7 a and the vectors in 7 a and 7 b .

Answer 7c.) $\mathbf{x}=(3,1,4)+t(5,1,2)+s(4,-1,-18)$.
Alternate method:

$$
\left[\begin{array}{cccc}
1 & 4 & 0 & -1 \\
5 & 2 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 4 & 0 & -1 \\
0 & -18 & 1 & 5
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 4 & 0 & -1 \\
0 & 1 & -\frac{1}{18} & -\frac{5}{18}
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & \frac{4}{18} & \frac{2}{18} \\
0 & 1 & -\frac{1}{18} & -\frac{5}{18}
\end{array}\right]
$$

Thus in parametric form, the line of intersection of the planes $x_{1}+4 x_{2}+1=0$ and $5 x_{1}+2 x_{3}+x_{3}=$ 0 is $x_{1}=\frac{2}{18}-\frac{4}{18} t, x_{2}=-\frac{5}{18}+\frac{1}{18} t, x_{3}=t$.
In point parallel vector form: $\mathbf{x}=\left(\frac{2}{18},-\frac{5}{18}, 0\right)+t\left(-\frac{4}{18}, \frac{1}{18}, 1\right)$
Thus $\left(-\frac{4}{18}, \frac{1}{18}, 1\right)$ is a vector describing the direction of this line.

