Let $\mathcal{U} = \{U_{\alpha}\}$ such that $X \subset \cup U_{\alpha}^{o}$.

Then $C_n^{\mathcal{U}}(X) = \{\sum r_i \sigma_i \mid \sigma_i \subset U_\alpha \text{ for some } \alpha\}$ is a subgroup of $C_n(X)$.

 $\partial(C_n^{\mathcal{U}}(X)) \subset C_{n-1}^{\mathcal{U}}(X) \text{ and } \partial^2 = 0. \text{ Thus } \exists H_n^{\mathcal{U}}(X)$

Prop 2.2.1: The inclusion map $i : C_n^{\mathcal{U}}(X) \to C_n(X)$ is a chain homotopy equivalence.

I.e., $\exists \rho : C_n(X) \to C_n^{\mathcal{U}}(X)$ such that $i\rho$ and ρi are chain homotopic to the identity.

Hence *i* induces an isomorphism $H_n^{\mathcal{U}}(X) \cong H_n(X)$.

(1) Barycentric subdivision of of (ideal) simplices.

Simplex $[v_0, ..., v_n] = \{ \sum t_i v_i \mid \sum t_i = 1, t_i \ge 0 \}$

Figure 1: http://www.wikiwand.com/en/Simplex

The barycenter = center of gravity = $b = \sum_{i=0}^{n} \frac{1}{n+1}v_i$

Barycentric subdivision: decompose $[v_0, ..., v_n]$ into the n-simplices $[b, w_0, ..., w_{n-1}]$, inductively.

Divide each edge $[v_1, v_2]$ in half, forming 2 new edges $[b, v_1]$, $[b, v_2]$. Note: $diam[b, v_i] = ||v_i - b|| = \frac{1}{2}||v_2 - v_1|| = \frac{1}{2}(diam[v_1, v_2])$

http://drorbn.net/AcademicPensieve/2010-06/

Claim:

If b is a barycenter of $[v_0, ..., v_{k-1}]$, then $||b-v_i|| \le \left(\frac{k-1}{k}\right) ||v_j-v_k||$. Thus diam $[b, w_0, ..., w_{k-1}] \le \left(\frac{k-1}{k}\right) diam[v_0, ..., v_n]$

Note: Claim is true for k = 2. Suppose claim is true for k = n - 1.

Suppose all the faces of $[v_0, ..., v_n]$ have been subdivided. For all n-1-simplices $[w_0, ..., w_{n-1}]$ in this subdivision, form the n-simplices $[b, w_0, ..., w_{n-1}]$, where b is the barycenter of $[v_0, ..., v_n]$

By induction $||w_i - w_j|| \le \left(\frac{n-1}{n}\right) ||v_l - v_k||.$

Let b_i be the barycenter of $[v_0, ..., \hat{v_i}, ..., v_n]$

$$b = \sum_{j=0}^{n} \frac{1}{n+1} v_j = \left(\frac{1}{n+1}\right) v_i + \sum_{j \neq i} \left(\frac{1}{n+1}\right) v_j = \left(\frac{1}{n+1}\right) v_i + \left(\frac{n}{n+1}\right) \sum_{j \neq i} \left(\frac{1}{n}\right) v_j$$
$$= \left(\frac{1}{n+1}\right) v_i + \left(\frac{n}{n+1}\right) b_i$$
Thus $||b - v_i|| = \left(\frac{n}{n+1}\right) ||b_i - v_i|| \le \left(\frac{n}{n+1}\right) ||v_j - v_i||$

Thus $diam[b, w_0, ..., w_{n-1}] \le \left(\frac{n}{n+1}\right) diam[v_0, ..., v_n]$

Thus repeated barycentric subdivision leads to simplices whose diameter is arbitrarily small.

2. Barycentric subdivision of Linear Chains

For Y convex, define $LC_n(Y) = \{\lambda : \Delta^n \to Y \mid \lambda \text{ is linear }\}$ $\partial(LC_n(Y)) \subset LC_{n-1}(Y).$

For convenience, define $LC_{-1}(Y) = \mathbb{Z} = \langle [\emptyset] \rangle$ where $\partial[v] = [\emptyset]$

If $b \in Y$, define homomorphism $b : LC_n(Y) \to LC_{n+1}(Y)$, $b([w_0, ..., w_n]) = [b, w_0, ..., w_n]$, the cone operator.

$$\partial b([w_0, ..., w_n]) = \partial [b, w_0, ..., w_n] = [w_0, ..., w_n] - b\partial [w_0, ..., w_n].$$

Thus if $\alpha = \sum_{i=1}^{n} r_i \lambda_i$, then $(\partial \circ b)(\alpha) = \alpha - (b \circ \partial)(\alpha), \forall \alpha \in LC_n(Y)$.

$$(\partial \circ b)(\alpha) + (b \circ \partial)(\alpha) = \alpha$$

That is $\partial \circ b + b \circ \partial = id - 0$, where id = the identity homomorphism and 0 = the constant zero homomorphism on $LC_n(Y)$.

Thus b is a chain homotopy between the identity map and the zero homomorphism on the augmented chain complex LC(Y).

Define subdivision homomorphism $S : LC_n(Y) \to LC_n(Y)$ by induction on n.

Let $\lambda : \Delta^n \to Y$ be a generator of $LC_n(Y)$.

Let $b_{\lambda} = \lambda(b)$ where b is the barycenter of Δ^n .

Define $S([\emptyset]) = [\emptyset]$ and $S(\lambda) = b_{\lambda}(S(\partial(\lambda)))$

Ex: If $\lambda = [v]$, then $b_{\lambda} = v$ and $S([v]) = b_{\lambda}(S(\partial([v]))) = v(S([\emptyset])) = v([\emptyset]) = [v].$

Thus S is the identity on $LC_{-1}(Y)$ and $LC_{0}(Y)$.

Ex: If
$$\lambda = [v, w], S([v, w]) = b_{\lambda}(S(\partial([v, w])))$$

 $= b_{\lambda}(S([w]) - S([v])) = b_{\lambda}([w] - [v]) = [b_{\lambda}, w] - [b_{\lambda}, v].$
Ex: If $\lambda = [u, v, w], S(u, [v, w]) = b_{\lambda}(S(\partial([u, v, w])))$
 $= b_{\lambda}(S([v, w]) - S([u, w]) + S([u, v]))$
 $= b_{\lambda}([b_{v,w}, w] - [b_{v,w}, v] - ([b_{u,w}, w] - [b_{u,w}, u]) + [b_{u,v}, v] - [b_{u,v}, u])$
 $= [b_{\lambda}, b_{v,w}, w] - [b_{\lambda}, b_{v,w}, v] - [b_{\lambda}, b_{u,w}, w] + [b_{\lambda}, b_{u,w}, u] + [b_{\lambda}, b_{u,v}, v] - [b_{\lambda}, b_{u,v}, u]$

If λ is an embedding, $S(\lambda)$ is the alternating sum of the simplices in the barycentric subdivision of λ .

Claim: S is a chain map between $LC_n(Y)$ and itself.

That is $\partial S = S \partial$.

Proof by induction on n:

True for n = -1, 0 since S = id.

 $\partial(S(\lambda)) = \partial(b_{\lambda}(S(\partial(\lambda)))) = (1 - b_{\lambda}\partial)(S(\partial(\lambda))))$

$$= S(\partial(\lambda)) - b_{\lambda}(\partial(S(\partial(\lambda)))) = S(\partial(\lambda)) - b_{\lambda}(S(\partial(\partial(\lambda))))$$
$$= S(\partial(\lambda)) - b_{\lambda}(S(0)) = S(\partial(\lambda))$$

Define a chain homotopy between S and id, $T : LC_n(Y) \to LC_{n+1}(Y)$ inductively: T = 0 for n = -1, and $T(\lambda) = b_{\lambda}(\lambda - T\partial\lambda)$. Thus $T([v]) = v([v] - T\partial[v]) = v([v] - T[\emptyset]) = v([v]) = [v, v]$. $T([v, w]) = b_{\lambda}([v, w] - T\partial[v, w]) = b_{\lambda}([v, w] - T([w] - [v]))$ $= b_{\lambda}([v, w] - [w, w] + [v, v]) = [b_{\lambda}, v, w] - [b_{\lambda}, w, w] + [b_{\lambda}, v, v]$

$$T([u, v, w]) = b_{\lambda}([u, v, w] - T\partial[u, v, w])$$

= $b_{\lambda}([u, v, w] - T([v, w] - [u, w] + [u, v]))$
= $b_{\lambda}([u, v, w] - ([b_{v,w}, v, w] - [b_{v,w}, w, w] + [b_{v,w}, v, v])$
- $([b_{u,w}, u, w] - [b_{u,w}, w, w] + [b_{u,w}, u, u])$
+ $([b_{u,v}, u, v] - [b_{u,v}, v, v] - [b_{u,v}, u, u])$

from: Hatcher

$$\begin{split} \partial(T(\lambda)) &= \partial b_{\lambda}(\lambda - T\partial \lambda) \\ &= \lambda - T\partial \lambda - b_{\lambda}\partial(\lambda - T\partial \lambda) & \text{since } \partial b_{\lambda} = id - b_{\lambda}\partial \\ &= \lambda - T\partial \lambda - b_{\lambda}[\partial \lambda - \partial T(\partial \lambda)] & \text{since } \partial \text{ is a homomorphism.} \\ &= \lambda - T\partial \lambda - b_{\lambda}[S(\partial \lambda) - T\partial(\partial \lambda)] \text{ by } id - \partial T = S - T\partial \text{ for dim(n-1)} \\ &= \lambda - T\partial \lambda - b_{\lambda}[S(\partial \lambda)] & \text{since } \partial^2 = 0 \\ &= \lambda - T\partial \lambda - S(\lambda) & \text{since } S(\lambda) = b_{\lambda}(S(\partial(\lambda))) \\ &\text{Thus } \partial T(\lambda) = \lambda - T\partial(\lambda) - S(\lambda). \text{ I.e., } \partial T + T\partial = id - S. \\ &\text{In other words, } T \text{ is a chain homotopy between } id \text{ and } S. \end{split}$$

3. Barycentric subdivision of general chains:

Currently S is only defined on convex subsets Y.

For example: $S: C_n(\Delta^n) \to C_n(\Delta^n)$.

For example if n = 1, $\Delta^n = [v, w]$ with barycenter b_{λ} , then

$$S(id_{[v,w]}) = id_{[b_{\lambda},w]} - id_{[b_{l},v]}$$

We can extend S to $C_n(X)$ as follows:

$$S: C_n(X) \to C_n(X)$$
 by $S(\sigma) = \sigma_{\#}S(\Delta^n)$.

For example, if $\sigma : [v, w] \to X \in C_n(X)$ with barycenter b_{λ} ,

$$S(\sigma) = \sigma_{\#}S(\Delta^n) = \sigma \circ (id_{[b_{\lambda},w]} - id_{[b_{\lambda},v]}) = \sigma_{[b_{\lambda},w]} - \sigma_{[b_{\lambda},v]}.$$

Note $\partial S = S \partial$:

$$\partial(S\sigma) = (\partial \sigma_{\#})S\Delta^{n} = \sigma_{\#}(\partial S)\Delta^{n} = \sigma_{\#}S(\partial \Delta^{n})$$

$$= \sigma_{\#}S(\sum_{i}(-1)^{i}\Delta_{i}^{n}) \quad \text{by defn of } \partial \text{ where } \Delta_{i}^{n} \text{ is the ith face of } \Delta^{n}$$

$$= \sum_{i}(-1)^{i}\sigma_{\#}S(\Delta_{i}^{n}), \quad \text{since } \sigma_{\#} \text{ and } S \text{ are homomorphisms.}$$

$$= \sum_{i}(-1)^{i}S(\sigma|_{\Delta_{i}^{n}}) \quad \text{by defn of } S.$$

$$= S(\sum_{i}(-1)^{i}(\sigma|_{\Delta_{i}^{n}})) \quad \text{since } S \text{ is a homomorphism.}$$

$$= S(\partial \sigma) \quad \text{by defn of } \partial \sigma$$

Similarly, extend $T : C_n(X) \to C_{n+1}(X)$ by $T(\sigma) = \sigma_{\#}T(\Delta^n)$. For example, if $\sigma : [v, w] \to X \in C_n(X)$ with barycenter b_{λ} , $T(\sigma) = \sigma_{\#}T(\Delta^n) = \sigma \circ (b_{\lambda}([v, w] - T\partial[v, w]))$ $= \sigma \circ (b_{\lambda}([v, w] - T([w] - [v])))$ $= \sigma \circ (b_{\lambda}([v, w] - [w, w] + [v, v]))$ $= \sigma \circ ([b_{\lambda}, v, w] - [b_{\lambda}, w, w] + [b_{\lambda}, v, v])$ $= \sigma |_{[b_{\lambda}, v, w]} - \sigma |_{[b_{\lambda}, w, w]} + \sigma |_{[b_{l}, v, v]}.$ T is a chain homotopy between S and id.

$$\begin{split} \partial T\sigma &= \partial \sigma_{\#} T(\Delta^n) = \sigma_{\#} \partial T(\Delta^n) = \sigma_{\#} (\Delta^n - S\Delta^n - T\partial\Delta^n) \\ &= \sigma - S\sigma - T(\partial\sigma) \end{split}$$

Hence $\partial T + T\partial = id - S$.

4. Iterated Barycentric subdivision

 $D_m : C_n(X) \to C_{n+1}(X)$ defined by $D_m = \sum_{i=0}^{m-1} TS^i$ is a chain homotopy between *id* and S^m :

$$\begin{split} \partial D_m + D_m \partial &= \partial \left(\sum_{i=0}^{m-1} TS^i\right) + \left(\sum_{i=0}^{m-1} TS^i\right) \partial = \sum_{i=0}^{m-1} \left(\partial TS^i + TS^i\partial\right) \\ &= \sum_{i=0}^{m-1} \left(\partial TS^i + T\partial S^i\right) = \sum_{i=0}^{m-1} \left(\partial T + T\partial\right) S^i = \sum_{i=0}^{m-1} \left(id - S\right) S^i \\ &= id - S^m. \end{split}$$

Let $\mathcal{U} = \{U_{\alpha}\}$ such that $X \subset \cup U_{\alpha}^{o}$.

For each singular simplex $\sigma : \Delta^n \to X$, choose the smallest m_{σ} such that the diameter of the simplices of $S^{m_{\sigma}}(\Delta^n)$ is less than the Lebesgue number of the cover of Δ^n by $\{\sigma^{-1}(U^o_{\alpha})\}$.

Define $D: C_n(X) \to C_{n+1}(X)$ by $D(\sigma) = D_{m_s}(\sigma)$ Define $\rho: C_n(X) \to C_n(X)$ by $\rho = id - \partial D - D\partial$. ρ is a chain map:

$$\partial \rho(\sigma) = \partial \sigma - \partial \partial D\sigma - \partial D \partial \sigma = \partial \sigma - \partial D \partial \sigma.$$
$$\rho \partial (\sigma) = \partial \sigma - \partial D \partial \sigma - D \partial \partial \sigma = \partial \sigma - \partial D \partial \sigma.$$

Thus D is a chain homotopy between id and ρ .

Claim:
$$\rho(C_n(X)) \subset C_n^{\mathcal{U}}(X)$$

 $\rho(\sigma) = \sigma - \partial D\sigma - D\partial\sigma = \sigma - \partial D_{m_\sigma}\sigma - D\partial\sigma$
 $= S^{m_\sigma}(\sigma) - D_{m_\sigma}\partial(\sigma) - D\partial\sigma \quad \text{since } id - \partial D_{m_\sigma} = S^{m_\sigma} - D_{m_\sigma}\partial$
 $= S^{m_\sigma}(\sigma) - D_{m_\sigma}(\sum(-1)^i\sigma_i) - D(\sum(-1)^i\sigma_i)$
where σ_i is the ith face of σ
 $= S^{m_\sigma}(\sigma) - D_{m_\sigma}(\sum(-1)^i\sigma_i) - D_{m_{\sigma_i}}(\sum(-1)^i\sigma_i)$
Since $\sigma_i \subset \sigma, \quad m_{\sigma_i} \leq m_\sigma$. Thus each term is in $C_n^{\mathcal{U}}(X)$
Define $\rho': C_n(X) \to C_n^{\mathcal{U}}(X)$ by $\rho' = \rho$. Then $\rho = i \circ \rho'$
Thus D is a chain homotopy between id and $i \circ \rho'$.

Note if $\sigma \in C_n^{\mathcal{U}}(X)$, then

$$D(\sigma) = (id - S^{m_{\sigma}})(\sigma) = (id - id)(\sigma) = 0.$$

Thus $\rho' = id - \partial D - D\partial = id$ and $\rho' \circ i$ is the identity on $C_n^{\mathcal{U}}(X)$

Thus ρ' is the chain homotopy inverse of *i*.