Singular homology

Generators of $C_n(X) = \{ \sigma_\alpha : \Delta^n_\alpha \to X \mid \sigma_\alpha \text{ is continuous} \}.$

Let $\sigma: (v_0, ..., v_n) \to X$ be continuous.

$$\partial_n(\sigma) = \sum_{i=1}^n (-1)^i \sigma | (v_0, ..., \hat{v_i}, ..., v_n) \in C_{n-1}(X)$$

Thus $\partial^2 = 0$ and $H_n(X) = Z_n(X)/B_n(X)$ is well defined where

$$Z_n = ker(\partial_n) =$$
cycles and $B_n = im(\partial_{n+1}) =$ boundaries.

Suppose $f: X \to Y$ is continuous.

f induces the homomorphism $f_{\#}: C_n(X) \to C_n(Y)$

 $f_{\#}(\sigma: \Delta \to X) = f \circ \sigma: \Delta \to Y$ and extend linearly.

Note: $f_{\#} \circ \partial = \partial \circ f_{\#}$

$$f_{\#}(\partial_{n}(\sigma)) = f_{\#}(\sum_{i=1}^{n} (-1)^{i} \sigma | (v_{0}, ..., \widehat{v_{i}}, ..., v_{n}))$$
$$= \sum_{i=1}^{n} (-1)^{i} (f_{\#}\sigma | (v_{0}, ..., \widehat{v_{i}}, ..., v_{n}))$$
$$= \partial_{n} (f_{\#}(\sigma))$$

If σ is a cycle, then $f_{\#}(\sigma)$ is a cycle. Thus $f_{\#}(Z_n(X)) \subset Z_n(Y)$. If $\sigma = \partial(\beta)$, then $f_{\#}(\sigma) = f_{\#}(\partial(\beta)) = \partial(f_{\#}(\beta))$ Thus $f_{\#}(B_n(X)) \subset B_n(Y)$. Hence $f_{\#}: C_n(X) \to C_n(Y)$ induces a homomorphism $f_*: H_n(X) \to H_n(Y)$

If
$$f: X \to Y$$
 is a homeomorphism, then
 $f_{\#}: C_n(X) \to C_n(Y)$ is an isomorphism
and $f_*: H_n(X) \to H_n(Y)$ is an isomorphism

Thus singular homology is a topological invariant.

Prop 2.6: Suppose X_{α} are the path components of X. Then $C_n(X) = \bigoplus_{\alpha} C_n(X_{\alpha})$ and $H_n(X) = \bigoplus_{\alpha} H_n(X_{\alpha})$

Prop 2.7: If X is non-empty, path-connected, then $H_0(X) = \mathbb{Z}$.

Prop 2.8:
$$H_n(point) = 0$$
 for $n > 0$ and $H_0(point) = \mathbb{Z}$.

Reduced homology

The reduced homology groups $H_n(X)$ are the homology groups of the augmented chain complex:

$$\cdots \xrightarrow{\partial_3} C_2 \xrightarrow{\partial_2} C_1 \xrightarrow{\partial_1} C_0 \xrightarrow{\epsilon} \mathbb{Z} \to 0$$

where $\epsilon(\sum_{i} n_i \sigma_i) = \sum_{i} n_i$. Note $\epsilon \partial_1 = 0$.

Thus ϵ induces a map $H_0 = C_0/Im(\partial_1) \to \mathbb{Z}$ w/ kernel $\widetilde{H}_0(X)$.

Thus $H_0(X) = \widetilde{H}_0(X) \oplus \mathbb{Z}$. $[\sigma] \to ([\sigma - \epsilon(\sigma)x], \epsilon(\sigma))$ For n > 0, $\widetilde{H}_n(X) = ker(\partial_n)/Im(\partial_{n+1}) = H_n(X)$. Hence $\widetilde{H}_n(point) = 0$ for all n.

$$\dots \to G_n \xrightarrow{\partial} \dots \to G_1 \to G_0 \to 0.$$

Category

A chain complex is a sequence of homomorphisms of abelian groups:

$$\dots \to G_n \to \dots \to G_1 \to G_0 \to 0.$$

Suppose $f: X \to Y$ is continuous.

f induces the homomorphism $f_{\#}: C_n(X) \to C_n(Y)$

 $f_{\#}(\sigma: \Delta \to X) = f \circ \sigma: \Delta \to Y$ and extend linearly.

$$f_{\#}\partial(\sigma) = f_{\#}(=\partial f_{\#}(\sigma))$$

A chain map $\phi : (C_{\bullet}, \partial_{\bullet}) \to (D_{\bullet}, \partial'_{\bullet})$ is a collection of homomorphisms $\phi_n : C_n \to D_n$ such that the following diagram commutes.

$$\cdots \longrightarrow C_2 \xrightarrow{\partial_2} C_1 \xrightarrow{\partial_1} C_0 \xrightarrow{\partial_0} 0 \\ \downarrow \phi_2 \qquad \qquad \downarrow \phi_1 \qquad \qquad \downarrow \phi_0 \qquad \qquad \parallel \\ \cdots \longrightarrow D_2 \xrightarrow{\partial_2'} D_1 \xrightarrow{\partial_1'} D_0 \xrightarrow{\partial_0'} 0$$

That is, such that $\phi_{n-1} \circ \partial_n = \partial'_n \circ \phi_n$ for all $n \ge 0$.

Objects: Chain complexes

Morphisms: Chain maps

Since $f_{\#}\partial = \partial f_{\#}$, $f_{\#}$ induces a homomorphism $f_*: H_n(X) \to H_n(Y).$

Categories, Functors, Natural Transformations (modified from

Defn 1. A category C consists of:

- a collection Ob(C) of **objects**.
- for any pair of objects x, y, a set hom(x, y) of morphisms from x to y. (If $f \in hom(x, y)$ we write $f: x \to y$.)

equipped with:

- for any object x, an identity morphism $1_x: x \to x$.
- for any pair of morphisms f: x → y and g: y → z, a morphism fg: x → z called the composite of f and g.

such that:

- for any morphism $f: x \to y$, the left and right unit laws hold: $1_x f = f = f 1_y$.
- for any triple of morphisms $f: w \to x, g: x \to y,$ $h: y \to z$, the associative law holds: (fg)h = f(gh).

We usually write $x \in C$ as an abbreviation for $x \in Ob(C)$. An **isomorphism** is a morphism $f: x \to y$ with an **inverse**, i.e. a morphism $g: y \to x$ such that $fg = 1_x$ and $gf = 1_y$. **Defn 2.** Given categories C, D, a functor $F: C \rightarrow D$ consists of:

- a function $F : \operatorname{Ob}(C) \to \operatorname{Ob}(D)$.
- for any pair of objects $x, y \in Ob(C)$, a function $F \colon hom(x, y) \to hom(F(x), F(y))$.

such that:

- F preserves identities: for any object $x \in C$, $F(1_x) = 1_{F(x)}$.
- F preserves composition: for any pair of morphisms $f: x \to y, g: y \to z \text{ in } C, F(fg) = F(f)F(g).$

It's not hard to define identity functors & composition of functors, & to check the left & right unit law & associative law for these.

Defn 3. Given functors $F, G: C \to D$, a natural transformation $\alpha: F \Rightarrow G$ consists of:

• a function α mapping each object $x \in C$ to a morphism $\alpha_x \colon F(x) \to G(x)$

such that:

• for any morphism $f: x \to y$ in C, this diagram commutes:

$$\begin{array}{c} F(x) \stackrel{F(f)}{\longrightarrow} F(y) \\ \alpha_x \downarrow \qquad \qquad \downarrow^{\alpha_y} \\ G(x)_{\overrightarrow{G(f)}} G(y) \end{array}$$

With a little thought you can figure out how to compose natural transformations $\alpha \colon F \to G$ and $\beta \colon G \Rightarrow H$ and get a natural transformation $\alpha\beta \colon F \Rightarrow H$. We can also define identity natural transformations. Again, it's not hard to check the left and right unit law and associativity for these.

Defn 4. Given functors $F, G: C \to D$, a **natural isomorphism** $\alpha: F \Rightarrow G$ is a natural transformation that has an **inverse**, *i.e.* a natural transformation $\beta: G \Rightarrow F$ such that $\alpha\beta = 1_F$ and $\beta\alpha = 1_G$.

It's not hard to see that a natural transformation $\alpha \colon F \Rightarrow G$ is a natural isomorphism iff for every object $x \in C$, the morphism α_x is invertible.

Defn 5. A functor $F: C \to D$ is an **equivalence** if it has a **weak inverse**, that is, a functor $G: D \to C$ such that there exist natural isomorphisms $\alpha: FG \Rightarrow 1_C, \beta: GF \Rightarrow 1_D$.