
Singular homology

Generators of Cn(X) = {σα : ∆n
α → X | σα is continuous}.

Let σ : (v0, ..., vn) → X be continuous.

∂n(σ) =
n∑

i=1

(−1)iσ|(v0, ..., v̂i, ..., vn) ∈ Cn−1(X)

Thus ∂2 = 0 and Hn(X) = Zn(X)/Bn(X) is well defined where

Zn = ker(∂n) = cycles and Bn = im(∂n+1) = boundaries.

Suppose f : X → Y is continuous.

f induces the homomorphism f# : Cn(X) → Cn(Y )

f#(σ : ∆ → X) = f ◦ σ : ∆ → Y and extend linearly.

Note: f# ◦ ∂ = ∂ ◦ f#

f#(∂n(σ)) = f#(
n∑

i=1

(−1)iσ|(v0, ..., v̂i, ..., vn))

=
n∑

i=1

(−1)i(f#σ|(v0, ..., v̂i, ..., vn))

= ∂n(f#(σ))

If σ is a cycle, then f#(σ) is a cycle. Thus f#(Zn(X)) ⊂ Zn(Y ).

If σ = ∂(β), then f#(σ) = f#(∂(β)) = ∂(f#(β))
Thus f#(Bn(X)) ⊂ Bn(Y ).



Hence f# : Cn(X) → Cn(Y ) induces
a homomorphism f∗ : Hn(X) → Hn(Y )

If f : X → Y is a homeomorphism, then
f# : Cn(X) → Cn(Y ) is an isomorphism

and f∗ : Hn(X) → Hn(Y ) is an isomorphism

Thus singular homology is a topological invariant.

Prop 2.6: Suppose Xα are the path components of X . Then
Cn(X) =

⊕
α
Cn(Xα) and Hn(X) =

⊕
α
Hn(Xα)

Prop 2.7: If X is non-empty, path-connected, then H0(X) = Z.

Prop 2.8: Hn(point) = 0 for n > 0 and H0(point) = Z.

Reduced homology

The reduced homology groups H̃n(X) are the homology groups
of the augmented chain complex:

· · · ∂3−→ C2
∂2−→ C1

∂1−→ C0
ϵ−→ Z → 0

where ϵ(
∑
i

niσi) =
∑
i

ni. Note ϵ∂1 = 0.

Thus ϵ induces a map H0 = C0/Im(∂1) → Z w/ kernel H̃0(X).

Thus H0(X) = H̃0(X)⊕Z. [σ] → ([σ− ϵ(σ)x], ϵ(σ))

For n > 0, H̃n(X) = ker(∂n)/Im(∂n+1) = Hn(X).

Hence H̃n(point) = 0 for all n.



... → Gn
∂−→ ... → G1 → G0 → 0.

Category

A chain complex is a sequence of homomorphisms of abelian
groups:

... → Gn → ... → G1 → G0 → 0.

Suppose f : X → Y is continuous.

f induces the homomorphism f# : Cn(X) → Cn(Y )

f#(σ : ∆ → X) = f ◦ σ : ∆ → Y and extend linearly.

f#∂(σ) = f#(= ∂f#(σ)

A chain map ϕ : (C•, ∂•) → (D•, ∂
′
•) is a collection of ho-

momorphisms ϕn : Cn → Dn such that the following diagram
commutes.

· · · //C2
∂2 //

ϕ2
��

C1
∂1 //

ϕ1
��

C0
∂0 //

ϕ0
��

0

· · · //D2
∂′2 //D1

∂′1 //D0
∂′0 // 0

That is, such that ϕn−1 ◦ ∂n = ∂′
n ◦ ϕn for all n ≥ 0.

Objects: Chain complexes

Morphisms: Chain maps

Since f#∂ = ∂f#, f# induces a homomorphism
f∗ : Hn(X) → Hn(Y ).



Categories, Functors, Natural Transforma-
tions (modified from

Defn 1 . A category C consists of:

• a collection Ob(C) of objects.

• for any pair of objects x, y, a set hom(x, y) of mor-
phisms from x to y. (If f ∈ hom(x, y) we write
f : x → y.)

equipped with:

• for any object x, an identity morphism 1x : x → x.

• for any pair of morphisms f : x → y and g : y → z, a
morphism fg : x → z called the composite of f and
g.

such that:

• for any morphism f : x → y, the left and right unit
laws hold: 1xf = f = f1y.

• for any triple of morphisms f : w → x, g : x → y,
h : y → z, the associative law holds: (fg)h = f (gh).

We usually write x ∈ C as an abbreviation for x ∈ Ob(C). An
isomorphism is a morphism f : x → y with an inverse, i.e.
a morphism g : y → x such that fg = 1x and gf = 1y.



Defn 2 . Given categories C,D, a functor F : C → D con-
sists of:

• a function F : Ob(C) → Ob(D).

• for any pair of objects x, y ∈ Ob(C),
a function F : hom(x, y) → hom(F (x), F (y)).

such that:

• F preserves identities: for any object x ∈ C, F (1x) =
1F (x).

• F preserves composition: for any pair of morphisms
f : x → y, g : y → z in C, F (fg) = F (f )F (g).

It’s not hard to define identity functors & composition of functors,
& to check the left & right unit law & associative law for these.

Defn 3 . Given functors F,G : C → D, a natural trans-
formation α : F ⇒ G consists of:

• a function α mapping each object x ∈ C to a morphism
αx : F (x) → G(x)

such that:

• for any morphism f : x → y in C, this diagram com-
mutes:

F (x)
F (f)

//

αx
��

F (y)
αy
��

G(x)
G(f)

//G(y)



With a little thought you can figure out how to compose natural
transformations α : F → G and β : G ⇒ H and get a natural
transformation αβ : F ⇒ H . We can also define identity natural
transformations. Again, it’s not hard to check the left and right
unit law and associativity for these.

Defn 4 . Given functors F,G : C → D, a natural isomor-
phism α : F ⇒ G is a natural transformation that has an
inverse, i.e. a natural transformation β : G ⇒ F such that
αβ = 1F and βα = 1G.

It’s not hard to see that a natural transformation α : F ⇒ G is
a natural isomorphism iff for every object x ∈ C, the morphism
αx is invertible.

Defn 5 . A functor F : C → D is an equivalence if it has a
weak inverse, that is, a functor G : D → C such that there
exist natural isomorphisms α : FG ⇒ 1C, β : GF ⇒ 1D.


