Singular homology

Generators of $C_{n}(X)=\left\{\sigma_{\alpha}: \Delta_{\alpha}^{n} \rightarrow X \mid \sigma_{\alpha}\right.$ is continuous $\}$.
Let $\sigma:\left(v_{0}, \ldots, v_{n}\right) \rightarrow X$ be continuous.

$$
\partial_{n}(\sigma)=\sum_{i=1}^{n}(-1)^{i} \sigma \mid\left(v_{0}, \ldots, \widehat{v_{i}}, \ldots, v_{n}\right) \in C_{n-1}(X)
$$

Thus $\partial^{2}=0$ and $H_{n}(X)=Z_{n}(X) / B_{n}(X)$ is well defined where

$$
Z_{n}=\operatorname{ker}\left(\partial_{n}\right)=\text { cycles and } B_{n}=i m\left(\partial_{n+1}\right)=\text { boundaries } .
$$

Suppose $f: X \rightarrow Y$ is continuous.

$$
f \text { induces the homomorphism } f_{\#}: C_{n}(X) \rightarrow C_{n}(Y)
$$

$$
f_{\#}(\sigma: \Delta \rightarrow X)=f \circ \sigma: \Delta \rightarrow Y \text { and extend linearly. }
$$

Note: $f_{\#} \circ \partial=\partial \circ f_{\#}$

$$
\begin{aligned}
f_{\#}\left(\partial_{n}(\sigma)\right) & =f_{\#}\left(\sum_{i=1}^{n}(-1)^{i} \sigma \mid\left(v_{0}, \ldots, \widehat{v}_{i}, \ldots, v_{n}\right)\right) \\
& =\sum_{i=1}^{n}(-1)^{i}\left(f_{\#} \sigma \mid\left(v_{0}, \ldots, \widehat{v}_{i}, \ldots, v_{n}\right)\right) \\
& =\partial_{n}\left(f_{\#}(\sigma)\right)
\end{aligned}
$$

If σ is a cycle, then $f_{\#}(\sigma)$ is a cycle. Thus $f_{\#}\left(Z_{n}(X)\right) \subset Z_{n}(Y)$.
If $\sigma=\partial(\beta)$, then $f_{\#}(\sigma)=f_{\#}(\partial(\beta))=\partial\left(f_{\#}(\beta)\right)$
Thus $f_{\#}\left(B_{n}(X)\right) \subset B_{n}(Y)$.

Hence $f_{\#}: C_{n}(X) \rightarrow C_{n}(Y)$ induces
a homomorphism $f_{*}: H_{n}(X) \rightarrow H_{n}(Y)$
If $f: X \rightarrow Y$ is a homeomorphism, then

$$
\begin{aligned}
f_{\#}: C_{n}(X) & \rightarrow C_{n}(Y) \text { is an isomorphism } \\
\text { and } f_{*}: H_{n}(X) & \rightarrow H_{n}(Y) \text { is an isomorphism }
\end{aligned}
$$

Thus singular homology is a topological invariant.
Prop 2.6: Suppose X_{α} are the path components of X. Then $C_{n}(X)=\bigoplus_{\alpha} C_{n}\left(X_{\alpha}\right)$ and $H_{n}(X)=\bigoplus_{\alpha} H_{n}\left(X_{\alpha}\right)$

Prop 2.7: If X is non-empty, path-connected, then $H_{0}(X)=\mathbb{Z}$.
Prop 2.8: $H_{n}($ point $)=0$ for $n>0$ and $H_{0}($ point $)=\mathbb{Z}$.

Reduced homology

The reduced homology groups $\widetilde{H}_{n}(X)$ are the homology groups of the augmented chain complex:
$\cdots \xrightarrow{\partial_{3}} C_{2} \xrightarrow{\partial_{2}} C_{1} \xrightarrow{\partial_{1}} C_{0} \xrightarrow{\epsilon} \mathbb{Z} \rightarrow 0$
where $\epsilon\left(\sum_{i} n_{i} \sigma_{i}\right)=\sum_{i} n_{i} . \quad$ Note $\epsilon \partial_{1}=0$.
Thus ϵ induces a map $H_{0}=C_{0} / \operatorname{Im}\left(\partial_{1}\right) \rightarrow \mathbb{Z}$ w/ kernel $\widetilde{H}_{0}(X)$.

$$
\text { Thus } H_{0}(X)=\widetilde{H}_{0}(X) \oplus \mathbb{Z} . \quad[\sigma] \rightarrow([\sigma-\epsilon(\sigma) x], \epsilon(\sigma))
$$

For $n>0, \widetilde{H}_{n}(X)=\operatorname{ker}\left(\partial_{n}\right) / \operatorname{Im}\left(\partial_{n+1}\right)=H_{n}(X)$.
Hence $\widetilde{H}_{n}($ point $)=0$ for all n.
$\ldots \rightarrow G_{n} \xrightarrow{\partial} \ldots \rightarrow G_{1} \rightarrow G_{0} \rightarrow 0$.

Category

A chain complex is a sequence of homomorphisms of abelian groups:
$\ldots \rightarrow G_{n} \rightarrow \ldots \rightarrow G_{1} \rightarrow G_{0} \rightarrow 0$.
Suppose $f: X \rightarrow Y$ is continuous.
f induces the homomorphism $f_{\#}: C_{n}(X) \rightarrow C_{n}(Y)$
$f_{\#}(\sigma: \Delta \rightarrow X)=f \circ \sigma: \Delta \rightarrow Y$ and extend linearly.
$f_{\#} \partial(\sigma)=f_{\#}\left(=\partial f_{\#}(\sigma)\right.$
A chain $\operatorname{map} \phi:\left(C_{\bullet}, \partial_{\bullet}\right) \rightarrow\left(D_{\bullet}, \partial_{\bullet}^{\prime}\right)$ is a collection of homomorphisms $\phi_{n}: C_{n} \rightarrow D_{n}$ such that the following diagram commutes.

That is, such that $\phi_{n-1} \circ \partial_{n}=\partial_{n}^{\prime} \circ \phi_{n}$ for all $n \geq 0$.
Objects: Chain complexes
Morphisms: Chain maps
Since $f_{\#} \partial=\partial f_{\#}, f_{\#}$ induces a homomorphism

$$
f_{*}: H_{n}(X) \rightarrow H_{n}(Y)
$$

Categories, Functors, Natural Transformations (modified from

Defn 1. A category C consists of:

- a collection $\mathrm{Ob}(C)$ of objects.
- for any pair of objects x, y, a set $\operatorname{hom}(x, y)$ of morphisms from x to y. (If $f \in \operatorname{hom}(x, y)$ we write $f: x \rightarrow y$.)
equipped with:
- for any object x, an identity morphism $1_{x}: x \rightarrow x$.
- for any pair of morphisms $f: x \rightarrow y$ and $g: y \rightarrow z, a$ morphism $f g: x \rightarrow z$ called the composite of f and g.
such that:
- for any morphism $f: x \rightarrow y$, the left and right unit laws hold: $1_{x} f=f=f 1_{y}$.
- for any triple of morphisms $f: w \rightarrow x, g: x \rightarrow y$, $h: y \rightarrow z$, the associative law holds: $(f g) h=f(g h)$.

We usually write $x \in C$ as an abbreviation for $x \in \mathrm{Ob}(C)$. An isomorphism is a morphism $f: x \rightarrow y$ with an inverse, i.e. a morphism $g: y \rightarrow x$ such that $f g=1_{x}$ and $g f=1_{y}$.

Defn 2. Given categories C, D, a functor $F: C \rightarrow D$ consists of:

- a function $F: \mathrm{Ob}(C) \rightarrow \mathrm{Ob}(D)$.
- for any pair of objects $x, y \in \mathrm{Ob}(C)$, a function $F: \operatorname{hom}(x, y) \rightarrow \operatorname{hom}(F(x), F(y))$.
such that:
- F preserves identities: for any object $x \in C, F\left(1_{x}\right)=$ $1_{F(x)}$.
- F preserves composition: for any pair of morphisms $f: x \rightarrow y, g: y \rightarrow z$ in $C, F(f g)=F(f) F(g)$.

It's not hard to define identity functors \& composition of functors, \& to check the left \& right unit law \& associative law for these.

Defn 3. Given functors $F, G: C \rightarrow D, a$ natural transformation $\alpha: F \Rightarrow G$ consists of:

- a function α mapping each object $x \in C$ to a morphism $\alpha_{x}: F(x) \rightarrow G(x)$
such that:
- for any morphism $f: x \rightarrow y$ in C, this diagram commutes:

$$
\begin{aligned}
& F(x) \xrightarrow{F(f)} F(y) \\
& \alpha_{x} \downarrow \\
& G(x)_{\overrightarrow{G(f)}} G(y)
\end{aligned}
$$

With a little thought you can figure out how to compose natural transformations $\alpha: F \rightarrow G$ and $\beta: G \Rightarrow H$ and get a natural transformation $\alpha \beta: F \Rightarrow H$. We can also define identity natural transformations. Again, it's not hard to check the left and right unit law and associativity for these.

Defn 4. Given functors $F, G: C \rightarrow D$, a natural isomorphism $\alpha: F \Rightarrow G$ is a natural transformation that has an inverse, i.e. a natural transformation $\beta: G \Rightarrow F$ such that $\alpha \beta=1_{F}$ and $\beta \alpha=1_{G}$.

It's not hard to see that a natural transformation $\alpha: F \Rightarrow G$ is a natural isomorphism iff for every object $x \in C$, the morphism α_{x} is invertible.

Defn 5. A functor $F: C \rightarrow D$ is an equivalence if it has a weak inverse, that is, a functor $G: D \rightarrow C$ such that there exist natural isomorphisms $\alpha: F G \Rightarrow 1_{C}, \beta: G F \Rightarrow 1_{D}$.

