Degree

Let $f: S^n \to S^n$ for n > 0.

Then
$$f_*: H_n(S^n) = \mathbb{Z} \to \mathbb{Z} = H_n(S^n)$$
.

 f_* is a homomorphism and thus $f_*(\alpha) = d\alpha$.

Defn: The degree of f is d.

- a.) deg id = 1
- b.) f not onto implies deg f = 0

Suppose
$$x_0 \in S^n - f(S^n)$$
. Then $S^n \to S^n - \{x_0\} \hookrightarrow S^n$
Thus $H_n(S^n) \to H_n(S^n - \{x_0\}) \hookrightarrow H_n(S^n)$
Hence $f_* = 0$ since $H_n(S^n - \{x_0\}) = 0$

c.) If f is homotopic to g, then $f_* = g_*$ and thus $\deg f = \deg g$.

Hopf Thm (cor 4.25): If deg f = deg g, then f is homotopic to g.

- d.) $(f \circ g)_* = f_* \circ g_*$, and thus $deg \ (f \circ g) = (deg \ f)(deg \ g)$
- e.) Let $S^n = \{x \in \mathbb{R}^{n+1} \mid ||x|| = 1\}$. $deg \ r_i = -1$ where

$$r_i(x_1, ..., x_{i-1}, x_i, x_{i+1}, ..., x_{n+1}) = (x_1, ..., x_{i-1}, -x_i, x_{i+1}, ..., x_{n+1}).$$

$$S^n = \Delta_1^n \bigcup_{\partial} \Delta_2^n, \quad H_n(S^n) = <\Delta_1^n - \Delta_2^n >$$

and
$$f(\Delta_1^n - \Delta_2^n) = -\Delta_1^n + \Delta_2^n$$

- f.) The antipodal map $-id: S^n \to S^n, -id(x) = -x$ has degree $(-1)^{n+1}$ since $r_1 \circ r_2 \circ ... \circ r_{n+1} = -id$.
- g.) If $f: S^n \to S^n$ has no fixed points, then $deg \ f = (-1)^{n+1}$ since f is homotopic to -id via the homotopy

$$F(x,t) = \frac{(1-t)f(x) - tx}{||(1-t)f(x) - tx||}$$

If (1-t)f(x) - tx = 0, then $f(x) = (\frac{t}{1-t})x$

$$x, f(x) \in S^n \Rightarrow ||x|| = 1, ||f(x)|| = |\frac{t}{1-t}|||x|| = 1 \Rightarrow \frac{t}{1-t} = 1, -1.$$

But if
$$f(x) = -x$$
, then $(1-t)f(x) - tx = (1-t)(-x) - tx = -x$.

Thus (1-t)f(x) - tx = 0 iff f has a fixed point and thus F is well-defined if f has no fixed points.

h.) If $Sf: S^{n+1} \to S^{n+1}$, S([x,t]) = S([f(x),t]) denotes the suspension map of $f: S^n \to S^n$, then $\deg Sf = \deg f$.

The cone of of
$$S^n=CS^n=(S^n\times I)/(S^n\times 1)$$
 with base $S^n=S^n\times 0\subset CS^n.$

 S^{n+1} = the suspension $SS^n = CS^n/S^n$

$$H_{n+1}(CS^n) \to H_{n+1}(CS^n, S^n) \xrightarrow{\partial_*} H_n(S^n) \to H_n(CS^n)$$

i.) $f: S^1 \to S^1$, $f(z) = z^k$ has degree k.

Thus $S^{n-1}f:S^n\to S^n$ has degree k

Suppose $f: S^n \to S^n$ and $\exists y \text{ such that } f^{-1}(y) = \{x_1, ..., x_m\}.$

Choose U_l , V open such that $x_l \in U_l$, $y \in V$, $f(U_l) \subset V$.

Then $f(U_l - x_l) \subset V - y$ and the following diagram commutes:

$$H_{n}(U_{l}, U_{l} - x_{l}) \xrightarrow{f_{*}} H_{n}(V, V - y)$$

$$\downarrow i_{U_{l}*} \downarrow \qquad \qquad \cong \downarrow$$

$$H_{n}(S^{n}, S^{n} - x_{l}) \xleftarrow{i_{*}} H_{n}(S^{n}, S^{n} - f^{-1}(y)) \xrightarrow{f_{*}} H_{n}(S^{n}, S^{n} - y)$$

$$\downarrow j \qquad \qquad \cong \uparrow$$

$$H_{n}(S^{n}) \xrightarrow{f_{*}} H_{n}(S^{n})$$

$$f_*: H_n(U_l, U_l - x_l) = \mathbb{Z} \to \mathbb{Z} = H_n(V, V - y), f_*(\alpha) = d_l \alpha.$$

Defn: The local degree of f at $x_l = deg \ f|_{x_l} = d_l$.

Prop:
$$deg f = \sum_{l=1}^{m} deg f|_{x_l}$$

$$H_n(S^n, S^n - f^{-1}(y)) \cong H_n(\sqcup U_l, \sqcup U_l - f^{-1}(y))$$

= $\bigoplus H_n(U_l, U_l - x_l) = \bigoplus \mathbb{Z}.$

$$(i_* \circ j)(1) = 1$$
. Thus $j(1) = (1, 1, ..., 1) = \sum i_{U_l*}(1)$

$$f_* \circ j(1) = (1, 1, ..., 1) = \sum f_* \circ i_{U_l*}(1) = \sum d_l$$

Note: If $f: U_l \to V$ is a homeomorphism, then $\deg f|_{x_l} = \pm 1$

Theorem 2.28: A continuous nonvanishing vector field on S^n exists if and only if n is odd.

Proof: (\Rightarrow) Suppose \exists a continuous nonvanishing vector field, v, on S^n

Normalize the vector field so that |v(x)| = 1 for all x.

Then $v(x) \in S^n$ and v(x) is perpendicular to x.

Thus $(cos(\pi t))x + (sin(\pi t))v(x) \in S^n$.

Then $F(x,t) = (cos(\pi t))x + (sin(\pi t))v(x)$ is a homotopy between the identity map on S^n and the antipodal map.

Thus $1 = (-1)^{n+1}$ and n is odd.

$$(\Leftarrow)$$
 Let $v(x_1, x_2, ..., x_{2l-1}, x_{2l}) = (-x_2, x_1, ..., -x_{2l}, x_{2l-1})$

Proposition 2.29: If n is even, then \mathbb{Z}_2 is the only nontrivial group that can act freely on S^n .

Suppose G acts on S^n . Then $g \in G$ defines a homeomorphism $g: S^n \to S^n$. Since g is a homeomorphism, $deg \ g = \pm 1$.

 $d: G \to \{\pm 1\}, d(g) = deg g$ is a homomorphism by property d.

If the action is free, then if $g \neq e$, $d(g) = (-1)^{n+1}$ by property g.

Thus if n is even, $g \neq e$ implies d(g) = -1, Thus ker(d) = e and d is an isomorphism. Thus $G \cong \{\pm 1\} \cong \mathbb{Z}_2$