What does a generator of C_n embedded in a topological space X look like?

Let D^n be either

the closed n-dimensional disk = $\{x \in \mathbb{R}^n \mid x \leq 1\}$ (for CW complex) or

the closed n-simplex = convex hull of n+1 affinely independent points.

For a Cech complex: $\bigcap_{i=0}^{n} U_i$ is visualized via simplicial D^n .

An abstract n-simplex:

 $(v_0,...,v_n)$ is visualized via simplicial D^n .

For a simplicial n-simplex:

 $\Phi_{\alpha}: D_{\alpha}^n \to X$ is a homeomorphism.

For a \triangle -simplex:

Assuming $\sigma_{\beta}: D_{\beta}^{n-1} \to X$ defined for all n-1-simplices, $\sigma_{\alpha}: D_{\alpha}^{n} \to X$ is an extension of $\sigma_{\beta_{i}}: D_{\beta_{i}}^{n-1} \to X$ for all faces $D_{\beta_{i}}^{n-1}$ of D_{α}^{n} . and $\sigma_{\alpha}: \mathring{D}_{\alpha}^{n} \to \sigma_{\alpha}(\mathring{D}_{\alpha}^{n}) \subset X$ is a homeomorphism.

Note that the restriction of the attaching maps $\sigma_{\beta_i}: \mathring{D}^n_{\beta_i} \to \sigma_{\beta_i}(\mathring{D}^n_{\beta_i})$ are homeomorphisms.

$$\sqcup D^n \, \hookrightarrow \, X^{n-1} \cup \bigsqcup_{\alpha} D^n_{\alpha} \, \to \, X^{n-1} \cup \bigsqcup_{\alpha} D^n_{\alpha} / \sim \, = \, X^n \, \hookrightarrow \, X$$

For CW simplex:

The attaching maps $\phi_{\alpha}: \partial D_{\alpha}^n \to X^{n-1}$ are continuous.

The characteristic map $\Phi_{\alpha}:D_{\alpha}^n\to X$ extends the attaching map $\phi_{\alpha}:\partial D_{\alpha}^n\to X^{n-1}$

and $\Phi_{\alpha}: \overset{\circ}{D_{\alpha}^{n}} \to \Phi_{\alpha}(\overset{\circ}{D_{\alpha}^{n}}) \subset X$ is a homeomorphism.

$$\sqcup D^n \hookrightarrow X^{n-1} \cup \bigsqcup_{\alpha} D^n_{\alpha} \to X^{n-1} \cup \bigsqcup_{\alpha} D^n_{\alpha} / \sim = X^n \hookrightarrow X$$

where $x \sim \phi_{\alpha}(x)$ for $x \in \partial D_{\alpha}^{n}$

For a singular simplex: $\sigma_{\alpha}: D_{\alpha}^n \to X$ is a continuous map.

What does a generator of C_0 embedded in a topological space X look like?

• simplicial/ Δ /CW/singular 1-simplex: A point.

What does a generator (including boundary) of C_1 embedded in a topological space X look like?

• Simplicial 1-simplex:

• Δ 1-simplex:

Case 1: 1 vertex

Case 2: 2 vertices

- CW 1-simplex: The same as a Δ complex.
- Singular 1-simplex: $f:[0,1] \to X$, where f is continuous. I.e., a singular 1-simplex is a path in X. Note this includes the constant path.

What does a generator (including boundary) of C_2 embedded in a topological space X look like?

• Simplicial 2-simplex:

• Δ 2-simplex:

Each edge of the 2-simplex must be glued via an orientation preserving homeomorphism to a loop or edge of X^{n-1} .

Case 1: 1 vertex

Case 1a: 1 edge (Dunce hat)

Figure 1: Identify the 2 circles. Dunce hat from math.stackexchange.com/questions/244885/dunce-hat-is-simply-connected by Ronnie Brown

See also Topological Dunce Hat by Jos Luis Rodrguez Blancas: https://youtu.be/34j4CppfRTA

Case 1bi: 2 edges

Figure 2: Don't identify the 2 circles math.stackexchange.com/questions/244885/dunce-hat-is-simply-connected by Ronnie Brown

Case 1bii: 2 edges

Case 1c: 3 edges

Example: torus

Case 2: 2 vertices

Case 3: 3 vertices.

Note each pair of distinct vertices defines a unique edge.

Example: Torus

Figure III.2: A vertex map and its induced simplicial map from the square to the torus

Figure 3: The simplicial triangulation of the torus is also a Δ -complex. From: Exterior, tex.stackexchange.com/questions/217645/typesetting-triangulations

• CW 2-simplex:

Multiple possibilities.

Only need attaching maps $\phi_{\alpha}: \partial D_{\alpha}^2 \to X^1$ to be continuous where $D^2 = \{x \in R^2 \mid ||x|| \leq 1\}$

For example,

• Singular 2-simplex: $f: \Delta^2 \to X$, where f is continuous. I.e., the image a singular 2-simplex is the image of a triangle in X. Note this image is a point if f is a constant map.