
Hom(A,G) = {h : A→ G | h homomorphism }
Hom(A,G) is a group under function addition.

The dual homomorphism to f : A→ B is the
homomorphism f ∗ : Hom(A,G)← Hom(B,G)

defined by f ∗(ψ) = ψ ◦ f : A→ B → G

That is the assignment

A→ Hom(A,G) and f → f ∗

is a contravarient functor from the category of abelian groups
and homomorphisms to itself since

If i : A→ A is the identity map on A, then

i∗(ψ) = ψ ◦ i = ψ is the identity map on Hom(A,G).

And if f : A→ B, g : B → C, ψ : C → G

(f ∗ ◦ g∗)(ψ) = f ∗(g∗(ψ)) = f ∗(ψ ◦ g) = ψ ◦ g ◦ f = (g ◦ f )∗(ψ)

In other words, if the diagram on the left commutes, so does the one
on the right:

A
k−−−→ C

f
?�

�
�
�
�
�3

g

B

Hom(A,G)
k∗←−−− Hom(C,G)

f∗
6

�
�
�
�
�
�

+
g∗

Hom(B,G)

• Hence f isomorphism implies f ∗ is an isomorphism.

• The constant fn f = 0 implies f ∗ = 0 since f ∗(ψ) = ψ◦f = ψ◦0.
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Given a chain complex:

... −→ Cn+1
∂n+1−−→ Cn

∂n−→ Cn−1 −→ ...

Its dual is also a chain complex:

...←− Hom(Cn+1, G)
∂∗n+1←−− Hom(Cn, G)

∂∗n←− Hom(Cn−1, G)←− ...

Cohomology

Cochains: ∆n(X ;G) = Hom(Cn, G) =
∏
σα

G

Coboundary map: δ1 = ∂∗1 : ∆0(X ;G)→ ∆1(X ;G)

Cohomology: Hn(X ;G) = Zn(X ;G)/Bn(X ;G) = ker(δn+1)/im(δn)

n = 0:

The dual of C1
∂1−→ C0

∂0−→ 0 is ∆1(X ;G)
δ1←−− ∆0(X ;G)

δ0←−− 0

im(δ0) = 0. Thus H0(X ;G) = ker(δ1)/im(δ0) = ker(δ1)

ψ : C0 = < V > −−→ G, defined by ψ(vα) = gα

δ1(ψ) : C1 = < E > −−→ G,

δ1(ψ)([v1, v2]) = ψ ◦ δ([v1, v2]) = ψ(v2 − v1) = ψ(v2)− ψ(v1).

Application: ψ = elevation, δ1(ψ) = change in elevation.

Application:
ψ = voltage at connection points, δ1(ψ) = voltage across components.
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δ1(ψ) = 0 iff

δ1(ψ)([v1, v2]) = ψ ◦ δ1([v1, v2]) = ψ(v2 − v1) = ψ(v2)− ψ(v1) = 0.

Thus

ker(δ1) = {ψ : C0 → G | ψ is constant on the components of X}

Hence H0(X ;G) =
∏

components of X
G.

Recall H0(X ;G) =
∑

components of X
G.

n = 1:

Dual of C2
∂2−→ C1

∂1−→ C0 is ∆2(X ;G)
δ2←− ∆1(X ;G)

δ1←− ∆0(X ;G)

H1(X ;G) = Z1(X ;G)/B1(X ;G) = ker(δ2)/im(δ1)

im(δ1) =?

Suppose δ1(ψ) = σ : ∆1 → G

Then σ is determined by trees in the 1-skeleton of X = X1.

Let T = a set of maximal trees for X1 & let A = {ea ∈ ∆1 | ea 6∈ T}.

If ∆2 = 0, H1(X ;G) = ker(δ2)/im(δ1) = ∆1/im(δ1) =
∏
eα∈A

G

Recall if ∆2 = 0, H1(X ;G) =
∑
eα∈A

G
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Lemma: If A
f−→ B

g−→ C −→ 0 is exact, then

Hom(A,G)
f∗←−− Hom(B,G)

g∗←−− Hom(C,G)← 0 is exact.

Proof:

Claim: g onto implies g∗ is 1:1.

Suppose g∗(ψ) = ψ ◦ g = 0. Since g is onto, ψ(x) = 0 for all x ∈ C.
Thus ψ = 0 and g∗ is 1:1.

Thus we have exactness at Hom(C,G).

Claim: im(f ) = ker(g) implies im(g∗) = ker(f ∗).

im(f ) ⊂ ker(g) implies g ◦ f = 0
implies f ∗ ◦ g∗ = (g ◦ f )∗ = 0∗ = 0 and thus im(g∗) ⊂ ker(f ∗).

Suppose ψ ∈ ker(f ∗), ψ : B → G. Then f ∗(ψ) = ψ ◦ f = 0. Thus
ψ(f (A)) = 0 and ψ induces homomorphism ψ′ : B/f (A)→ G

g induces an isomorphism g′ : B/ker(g) = B/f (A)→ C.

G
ψ←−−−− B

g−−−−→ C
Q
Q
Q
Q
Q
Q

k

ψ′
? �

�
�
�
�
�3

∼= g′

B/f (A)

g∗(ψ′ ◦ (g′)−1) = ψ′ ◦ (g′)−1 ◦ g = ψ
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Lemma: If 0 −→ A
f−→ B

g−→ C −→ 0 is split exact, then

0 −→ Hom(A,G)
f∗←− Hom(B,G)

g∗←− Hom(C,G)← 0 is split exact.

Proof: ∃π : B → A such that π ◦ f = idA.

Thus (π ◦ f )∗ = f ∗ ◦ π∗ = identity on Hom(A,G).

Thus f ∗ is surjective and the dual sequence splits.

Note also that Hom(
⊕

Aα, G) =
∏
Hom(Aα, G),

and thus Hom(A
⊕

C,G) = Hom(A,G)
⊕

Hom(C,G)

Example: The dual of the exact sequence 0 −→ Z ×2−→ Z π−→ Z2 −→ 0

0←− Hom(Z, G)
t∗←− Hom(Z, G)

π∗←− Hom(Z2, G)←− 0

π∗(ψ) = ψ ◦ π : Z π−→ Z2
ψ−→ G, defined by (ψ ◦ π)(1) = ψ(1).

t∗(ψ) = ψ ◦ t : Z t−→ Z ψ−→ G,

defined by (ψ ◦ t)(1) = ψ(2) = ψ(1) + ψ(1) = 2ψ(1).
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Defn: A free resolution of an abelian groupH is an exact sequence
of abelian groups,

...
f3−−→ F2

f2−−→ F1
f1−−→ F0

f0−−→ H → 0

where each Fi is free.

Recall an exact sequence is a chain complex, and the dual of a chain
complex is a chain complex.

Thus the dualization of this free resolution is a chain complex:

...
f∗2←−− Hom(F1, G)

f∗1←−− Hom(F0, G)
f∗0←−− Hom(H,G)← 0

Let Hn(F ;G) = Ker(f ∗n+1)/im(f ∗n)

Lemma 3.1: a.) Given two free resolutions F and F ′ of H and H ′,
respectively, every homomorphism α : H → H ′ can be extended to
a chain map from F to F ′:

... −→ F2 −→ F1
φ−−→ F0

ψ−−→ H −→ 0

∃α2

−
→ ∃α1

−
→ ∃α0

−
→

−−−→ α

... −→ F ′2 −→ F ′1
φ−−→ F ′0

ψ−−→ H ′ −→ 0

Furthermore, any two such chain maps extending α are chain homo-
topic.

b.) For any two free resolutions F and F ′ of H , ∃ canonical isomor-
phism Hn(F ;G) = Hn(F ′, G) for all n.
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Example: A short exact sequence of abelian groups,

0→ F1 → F0 → H → 0

where Fi are free is called a free resolution of H .

Example: 0→ Bp(X) ↪→ Zp(X)→ Hp(X)→ 0

Example:

Let F0 = the free abelian group generated by the generators of H .

Let F1 = kernel of projection map F0 → H .

Dual of the exact seq 0→ F1 → F0 → H → 0 is the chain complex:

0
f∗2←−− Hom(F1, G)

f∗1←−− Hom(F0, G)
f∗0←−− Hom(H,G)← 0

Recall F1 → F0 → H → 0 exact implies its dual is also exact:

Hom(F1, G)
f∗1←−− Hom(F0, G)

f∗0←−− Hom(H,G)← 0

Note Hn(F ;G) = Ker(f ∗n+1)/im(f ∗n) = 0 for n > 1.

And H0(F ;G) = Ker(f ∗1 )/im(f ∗0 ) = 0.

But H1(F ;G) = Ker(f ∗2 )/im(f ∗1 ) = ?.

Definition: Ext(H,G) = H1(F ;G) (the extension of G by H).
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For computational purposes, the following properties are useful.

(a) Ext(H ⊕H ′, G) ∼= Ext(H,G)⊕ Ext(H ′, G) since the direct
sum of free resolutions is the free resolution of the direct sum.

(b) Ext(H,G) = 0 if H is free
since 0→ H → H → 0 is a free resolution of H .

(c) Ext(Z/n,G) ∼= G/nG

by dualizing the free resolution 0→ Z n−→ Z→ Zn → 0.

to produce the exact sequence:

0←− Ext(Zn, G)←− Hom(Z, G)
n←− Hom(Z, G)←− Hom(Zn, G)← 0

Theorem 1. If a chain complex C• of free abelian groups has
homology groups H•(C), then the cohomology groups H•(C;G)
of the cochain complex Hom(C•, G) are determined by the split
exact sequences

0 //Ext(Hn−1(C), G) //Hn(C;G) h //Hom(Hn(C), G) // 0.

Corollary 1. If the homology groups Hn and Hn−1 of a chain
complex C of free abelian groups are finitely generated, with tor-
sion subgroups Tn ⊂ Hn and Tn−1 ⊂ Hn, then

Hn(C;Z) ∼= (Hn/Tn)⊕ Tn−1.
Corollary 2. If a chain map between chain complexes of free
abelian groups induces an isomorphism on homology groups, then
it induces an isomorphism on cohomology groups with any coef-
ficient group G.
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