$\operatorname{Hom}(A, G)=\{h: A \rightarrow G \mid h$ homomorphism $\}$
$\operatorname{Hom}(A, G)$ is a group under function addition.
The dual homomorphism to $f: A \rightarrow B$ is the
homomorphism $f^{*}: \operatorname{Hom}(A, G) \leftarrow \operatorname{Hom}(B, G)$
defined by $f^{*}(\psi)=\psi \circ f: A \rightarrow B \rightarrow G$
That is the assignment

$$
A \rightarrow \operatorname{Hom}(A, G) \quad \text { and } \quad f \rightarrow f^{*}
$$

is a contravarient functor from the category of abelian groups and homomorphisms to itself since

If $i: A \rightarrow A$ is the identity map on A, then

$$
i_{*}(\psi)=\psi \circ i=\psi \text { is the identity map on } \operatorname{Hom}(A, G)
$$

And if $f: A \rightarrow B, \quad g: B \rightarrow C, \quad \psi: C \rightarrow G$

$$
\left(f^{*} \circ g^{*}\right)(\psi)=f^{*}\left(g^{*}(\psi)\right)=f^{*}(\psi \circ g)=\psi \circ g \circ f=(g \circ f)^{*}(\psi)
$$

In other words, if the diagram on the left commutes, so does the one on the right:

- Hence f isomorphism implies f^{*} is an isomorphism.
- The constant fn $f=0$ implies $f^{*}=0$ since $f^{*}(\psi)=\psi \circ f=\psi \circ 0$.

Given a chain complex:

$$
\ldots \rightarrow C_{n+1} \xrightarrow{\partial_{n+1}} C_{n} \xrightarrow{\partial n} C_{n-1} \rightarrow \ldots
$$

Its dual is also a chain complex:
$\ldots \leftarrow \operatorname{Hom}\left(C_{n+1}, G\right) \stackrel{\partial_{n+1}^{*}}{\leftarrow} \operatorname{Hom}\left(C_{n}, G\right) \stackrel{\partial_{n}^{*}}{\leftarrow} \operatorname{Hom}\left(C_{n-1}, G\right) \leftarrow \ldots$

Cohomology

Cochains: $\Delta^{n}(X ; G)=\operatorname{Hom}\left(C_{n}, G\right)=\prod_{\sigma_{\alpha}} G$
Coboundary map: $\delta^{1}=\partial_{1}^{*}: \Delta^{0}(X ; G) \rightarrow \Delta^{1}(X ; G)$
Cohomology: $H^{n}(X ; G)=Z^{n}(X ; G) / B^{n}(X ; G)=\operatorname{ker}\left(\delta_{n+1}\right) / \operatorname{im}\left(\delta_{n}\right)$ $n=0:$

The dual of $C_{1} \xrightarrow{\partial_{1}} C_{0} \xrightarrow{\partial_{0}} 0 \quad$ is $\quad \Delta^{1}(X ; G) \stackrel{\delta_{1}}{\longleftarrow} \Delta^{0}(X ; G) \stackrel{\delta_{0}}{\longleftarrow} 0$ $i m\left(\delta_{0}\right)=0$. Thus $H^{0}(X ; G)=\operatorname{ker}\left(\delta_{1}\right) / \operatorname{im}\left(\delta_{0}\right)=\operatorname{ker}\left(\delta_{1}\right)$
$\psi: C_{0}=<V>\longrightarrow G, \quad$ defined by $\psi\left(v_{\alpha}\right)=g_{\alpha}$
$\delta_{1}(\psi): C_{1}=<E>\quad \longrightarrow G$,
$\delta_{1}(\psi)\left(\left[v_{1}, v_{2}\right]\right)=\psi \circ \delta\left(\left[v_{1}, v_{2}\right]\right)=\psi\left(v_{2}-v_{1}\right)=\psi\left(v_{2}\right)-\psi\left(v_{1}\right)$.
Application: $\psi=$ elevation, $\delta_{1}(\psi)=$ change in elevation.
Application:
$\psi=$ voltage at connection points, $\delta_{1}(\psi)=$ voltage across components.
$\delta_{1}(\psi)=0$ iff
$\delta_{1}(\psi)\left(\left[v_{1}, v_{2}\right]\right)=\psi \circ \delta_{1}\left(\left[v_{1}, v_{2}\right]\right)=\psi\left(v_{2}-v_{1}\right)=\psi\left(v_{2}\right)-\psi\left(v_{1}\right)=0$.
Thus
$\operatorname{ker}\left(\delta_{1}\right)=\left\{\psi: C_{0} \rightarrow G \mid \psi\right.$ is constant on the components of $\left.X\right\}$

$$
\text { Hence } H^{0}(X ; G)=\prod_{\text {components of } X} G \text {. }
$$

Recall $H_{0}(X ; G)=\sum_{\text {components of } X} G$.
$n=1:$
Dual of $C_{2} \xrightarrow{\partial_{2}} C_{1} \xrightarrow{\partial_{1}} C_{0}$ is $\Delta^{2}(X ; G) \stackrel{\delta_{2}}{\leftarrow} \Delta^{1}(X ; G) \stackrel{\delta_{1}}{\leftarrow} \Delta^{0}(X ; G)$
$H^{1}(X ; G)=Z^{1}(X ; G) / B^{1}(X ; G)=\operatorname{ker}\left(\delta_{2}\right) / \operatorname{im}\left(\delta_{1}\right)$
$i m\left(\delta_{1}\right)=?$
Suppose $\delta_{1}(\psi)=\sigma: \Delta^{1} \rightarrow G$
Then σ is determined by trees in the 1-skeleton of $X=X^{1}$.
Let $T=$ a set of maximal trees for $X^{1} \&$ let $A=\left\{e_{a} \in \Delta^{1} \mid e_{a} \notin T\right\}$.
If $\Delta^{2}=0, H^{1}(X ; G)=\operatorname{ker}\left(\delta_{2}\right) / i m\left(\delta_{1}\right)=\Delta^{1} / i m\left(\delta_{1}\right)=\prod_{e_{\alpha} \in A} G$
Recall if $\Delta^{2}=0, H^{1}(X ; G)=\sum_{e_{\alpha} \in A} G$

Lemma: If $A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$ is exact, then $\operatorname{Hom}(A, G) \stackrel{f^{*}}{\leftrightarrows} \operatorname{Hom}(B, G) \stackrel{g^{*}}{\leftrightarrows} \operatorname{Hom}(C, G) \leftarrow 0$ is exact.

Proof:

Claim: g onto implies g^{*} is $1: 1$.
Suppose $g^{*}(\psi)=\psi \circ g=0$. Since g is onto, $\psi(x)=0$ for all $x \in C$. Thus $\psi=0$ and g^{*} is $1: 1$.

Thus we have exactness at $\operatorname{Hom}(C, G)$.
Claim: $\operatorname{im}(f)=\operatorname{ker}(g)$ implies $\operatorname{im}\left(g^{*}\right)=\operatorname{ker}\left(f^{*}\right)$.
$i m(f) \subset \operatorname{ker}(g)$ implies $g \circ f=0$
implies $f^{*} \circ g^{*}=(g \circ f)^{*}=0^{*}=0$ and thus $\operatorname{im}\left(g^{*}\right) \subset \operatorname{ker}\left(f^{*}\right)$.
Suppose $\psi \in \operatorname{ker}\left(f^{*}\right), \psi: B \rightarrow G$. Then $f^{*}(\psi)=\psi \circ f=0$. Thus $\psi(f(A))=0$ and ψ induces homomorphism $\psi^{\prime}: B / f(A) \rightarrow G$
g induces an isomorphism $g^{\prime}: B / \operatorname{ker}(g)=B / f(A) \rightarrow C$.

$g^{*}\left(\psi^{\prime} \circ\left(g^{\prime}\right)^{-1}\right)=\psi^{\prime} \circ\left(g^{\prime}\right)^{-1} \circ g=\psi$

Lemma: If $0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$ is split exact, then
$0 \rightarrow \operatorname{Hom}(A, G) \stackrel{f^{*}}{\leftarrow} \operatorname{Hom}(B, G) \stackrel{g^{g^{*}}}{\leftarrow} \operatorname{Hom}(C, G) \leftarrow 0$ is split exact.
Proof: $\exists \pi: B \rightarrow A$ such that $\pi \circ f=i d_{A}$.
Thus $(\pi \circ f)^{*}=f^{*} \circ \pi^{*}=$ identity on $\operatorname{Hom}(A, G)$.
Thus f^{*} is surjective and the dual sequence splits.

Note also that $\operatorname{Hom}\left(\bigoplus A_{\alpha}, G\right)=\prod \operatorname{Hom}\left(A_{\alpha}, G\right)$, and thus $\operatorname{Hom}(A \bigoplus C, G)=\operatorname{Hom}(A, G) \bigoplus \operatorname{Hom}(C, G)$

Example: The dual of the exact sequence $0 \rightarrow \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \xrightarrow{\pi} \mathbb{Z}_{2} \rightarrow 0$

$$
0 \leftarrow \operatorname{Hom}(\mathbb{Z}, G) \stackrel{t^{*}}{\leftarrow} \operatorname{Hom}(\mathbb{Z}, G) \stackrel{\pi^{*}}{\leftarrow} \operatorname{Hom}\left(\mathbb{Z}_{2}, G\right) \leftarrow 0
$$

$\pi^{*}(\psi)=\psi \circ \pi: \mathbb{Z} \xrightarrow{\pi} \mathbb{Z}_{2} \xrightarrow{\psi} G$, defined by $(\psi \circ \pi)(1)=\psi(1)$.
$t^{*}(\psi)=\psi \circ t: \mathbb{Z} \xrightarrow{t} \mathbb{Z} \xrightarrow{\psi} G$, defined by $(\psi \circ t)(1)=\psi(2)=\psi(1)+\psi(1)=2 \psi(1)$.

Defn: A free resolution of an abelian group H is an exact sequence of abelian groups,

$$
\ldots \xrightarrow{f_{3}} F_{2} \xrightarrow{f_{2}} F_{1} \xrightarrow{f_{1}} F_{0} \xrightarrow{f_{0}} H \rightarrow 0
$$

where each F_{i} is free.
Recall an exact sequence is a chain complex, and the dual of a chain complex is a chain complex.

Thus the dualization of this free resolution is a chain complex:

$$
\ldots \stackrel{f_{2}^{*}}{\leftarrow} \operatorname{Hom}\left(F_{1}, G\right) \stackrel{f_{1}^{*}}{\longleftarrow} \operatorname{Hom}\left(F_{0}, G\right) \stackrel{f_{0}^{*}}{\longleftarrow} \operatorname{Hom}(H, G) \leftarrow 0
$$

Let $H^{n}(F ; G)=\operatorname{Ker}\left(f_{n+1}^{*}\right) / i m\left(f_{n}^{*}\right)$
Lemma 3.1: a.) Given two free resolutions F and F^{\prime} of H and H^{\prime}, respectively, every homomorphism $\alpha: H \rightarrow H^{\prime}$ can be extended to a chain map from F to F^{\prime} :

Furthermore, any two such chain maps extending α are chain homotopic.
b.) For any two free resolutions F and F^{\prime} of H, \exists canonical isomorphism $H^{n}(F ; G)=H^{n}\left(F^{\prime}, G\right)$ for all n.

Example: A short exact sequence of abelian groups,

$$
0 \rightarrow F_{1} \rightarrow F_{0} \rightarrow H \rightarrow 0
$$

where F_{i} are free is called a free resolution of H.
Example: $0 \rightarrow B_{p}(X) \hookrightarrow Z_{p}(X) \rightarrow H_{p}(X) \rightarrow 0$
Example:
Let $F_{0}=$ the free abelian group generated by the generators of H.
Let $F_{1}=$ kernel of projection map $F_{0} \rightarrow H$.
Dual of the exact seq $0 \rightarrow F_{1} \rightarrow F_{0} \rightarrow H \rightarrow 0$ is the chain complex:
$0 \stackrel{f_{2}^{*}}{\longleftarrow} \operatorname{Hom}\left(F_{1}, G\right) \stackrel{f_{1}^{*}}{\longleftarrow} \operatorname{Hom}\left(F_{0}, G\right) \stackrel{f_{0}^{*}}{\longleftarrow} \operatorname{Hom}(H, G) \leftarrow 0$
Recall $F_{1} \rightarrow F_{0} \rightarrow H \rightarrow 0$ exact implies its dual is also exact:

$$
\operatorname{Hom}\left(F_{1}, G\right) \stackrel{f_{1}^{*}}{\longleftarrow} \operatorname{Hom}\left(F_{0}, G\right) \stackrel{f_{0}^{*}}{\longleftarrow} \operatorname{Hom}(H, G) \leftarrow 0
$$

Note $H^{n}(F ; G)=\operatorname{Ker}\left(f_{n+1}^{*}\right) / i m\left(f_{n}^{*}\right)=0$ for $n>1$.
And $H^{0}(F ; G)=\operatorname{Ker}\left(f_{1}^{*}\right) / i m\left(f_{0}^{*}\right)=0$.
But $H^{1}(F ; G)=\operatorname{Ker}\left(f_{2}^{*}\right) / i m\left(f_{1}^{*}\right)=?$
Definition: $\operatorname{Ext}(H, G)=H^{1}(F ; G) \quad$ (the extension of G by $\left.H\right)$.

For computational purposes, the following properties are useful.
(a) $\operatorname{Ext}\left(H \oplus H^{\prime}, G\right) \cong \operatorname{Ext}(H, G) \oplus \operatorname{Ext}\left(H^{\prime}, G\right) \quad$ since the direct sum of free resolutions is the free resolution of the direct sum.
(b) $\operatorname{Ext}(H, G)=0$ if H is free since $0 \rightarrow H \rightarrow H \rightarrow 0$ is a free resolution of H.
(c) $\operatorname{Ext}(\mathbb{Z} / n, G) \cong G / n G$ by dualizing the free resolution $0 \rightarrow \mathbb{Z} \xrightarrow{n} \mathbb{Z} \rightarrow \mathbb{Z}_{n} \rightarrow 0$. to produce the exact sequence:
$0 \leftarrow \operatorname{Ext}\left(\mathbb{Z}_{n}, G\right) \leftarrow \operatorname{Hom}(\mathbb{Z}, G) \stackrel{n}{\leftarrow} \operatorname{Hom}(\mathbb{Z}, G) \leftarrow \operatorname{Hom}\left(\mathbb{Z}_{n}, G\right) \leftarrow 0$

Theorem 1. If a chain complex C. of free abelian groups has homology groups $H_{\bullet}(C)$, then the cohomology groups $H^{\bullet}(C ; G)$ of the cochain complex $\operatorname{Hom}\left(C_{\bullet}, G\right)$ are determined by the split exact sequences

$$
0 \longrightarrow \operatorname{Ext}\left(H_{n-1}(C), G\right) \longrightarrow H^{n}(C ; G) \xrightarrow{h} \operatorname{Hom}\left(H_{n}(C), G\right) \longrightarrow 0 .
$$

Corollary 1. If the homology groups H_{n} and H_{n-1} of a chain complex C of free abelian groups are finitely generated, with torsion subgroups $T_{n} \subset H_{n}$ and $T_{n-1} \subset H_{n}$, then

$$
H^{n}(C ; Z) \cong\left(H_{n} / T_{n}\right) \oplus T_{n-1} .
$$

Corollary 2. If a chain map between chain complexes of free abelian groups induces an isomorphism on homology groups, then it induces an isomorphism on cohomology groups with any coefficient group G.

