$Hom(A,G) = \{h : A \to G \mid h \text{ homomorphism } \}$ Hom(A,G) is a group under function addition.

The **dual homomorphism to** $f : A \to B$ is the homomorphism $f^* : Hom(A, G) \leftarrow Hom(B, G)$ defined by $f^*(\psi) = \psi \circ f : A \to B \to G$

That is the assignment

$$A \to Hom(A, G)$$
 and $f \to f^*$

is a **contravarient functor** from the category of abelian groups and homomorphisms to itself since

If $i : A \to A$ is the identity map on A, then $i_*(\psi) = \psi \circ i = \psi$ is the identity map on Hom(A, G).

And if $f: A \to B$, $g: B \to C$, $\psi: C \to G$

$$(f^* \circ g^*)(\psi) = f^*(g^*(\psi)) = f^*(\psi \circ g) = \psi \circ g \circ f = (g \circ f)^*(\psi)$$

In other words, if the diagram on the left commutes, so does the one on the right:

• Hence f isomorphism implies f^* is an isomorphism.

• The constant fn f = 0 implies $f^* = 0$ since $f^*(\psi) = \psi \circ f = \psi \circ 0$.

Given a chain complex:

$$\dots \to C_{n+1} \xrightarrow{\partial_{n+1}} C_n \xrightarrow{\partial_n} C_{n-1} \to \dots$$

Its dual is also a chain complex:

$$\dots \leftarrow Hom(C_{n+1}, G) \xleftarrow{\partial_{n+1}^*} Hom(C_n, G) \xleftarrow{\partial_n^*} Hom(C_{n-1}, G) \leftarrow \dots$$

Cohomology

Cochains: $\Delta^n(X;G) = Hom(C_n,G) = \prod_{\sigma_\alpha} G$

Coboundary map: $\delta^1 = \partial_1^* : \Delta^0(X; G) \to \Delta^1(X; G)$

Cohomology: $H^n(X;G) = Z^n(X;G)/B^n(X;G) = ker(\delta_{n+1})/im(\delta_n)$ <u>n = 0</u>:

The dual of $C_1 \xrightarrow{\partial_1} C_0 \xrightarrow{\partial_0} 0$ is $\Delta^1(X; G) \xleftarrow{\delta_1} \Delta^0(X; G) \xleftarrow{\delta_0} 0$ $im(\delta_0) = 0$. Thus $H^0(X; G) = ker(\delta_1)/im(\delta_0) = ker(\delta_1)$ $\psi: C_0 = \langle V \rangle \longrightarrow G$, defined by $\psi(v_\alpha) = g_\alpha$ $\delta_1(\psi): C_1 = \langle E \rangle \longrightarrow G$, $\delta_1(\psi)([v_1, v_2]) = \psi \circ \delta([v_1, v_2]) = \psi(v_2 - v_1) = \psi(v_2) - \psi(v_1).$ Application: $\psi = \text{elevation}, \ \delta_1(\psi) = \text{change in elevation}.$ Application: $\psi = \text{voltage at connection points}, \ \delta_1(\psi) = \text{voltage across components}.$

$$\delta_1(\psi) = 0 \text{ iff}$$

$$\delta_1(\psi)([v_1, v_2]) = \psi \circ \delta_1([v_1, v_2]) = \psi(v_2 - v_1) = \psi(v_2) - \psi(v_1) = 0.$$

Thus

$$\ker(\delta_1) = \{\psi : C_0 \to G \mid \psi \text{ is constant on the components of } X\}$$

Hence $H^0(X; G) = \prod_{\text{components of } X} G.$
Recall $H_0(X; G) = \sum_{\text{components of } X} G.$

 $\underline{n=1}$:

Dual of $C_2 \xrightarrow{\partial_2} C_1 \xrightarrow{\partial_1} C_0$ is $\Delta^2(X; G) \xleftarrow{\delta_2} \Delta^1(X; G) \xleftarrow{\delta_1} \Delta^0(X; G)$ $H^1(X; G) = Z^1(X; G)/B^1(X; G) = ker(\delta_2)/im(\delta_1)$ $im(\delta_1) = ?$ Suppose $\delta_1(\psi) = \sigma : \Delta^1 \to G$

Then σ is determined by trees in the 1-skeleton of $X = X^1$.

Let T = a set of maximal trees for X^1 & let $A = \{e_a \in \Delta^1 \mid e_a \notin T\}$. If $\Delta^2 = 0$, $H^1(X; G) = ker(\delta_2)/im(\delta_1) = \Delta^1/im(\delta_1) = \prod_{e_\alpha \in A} G$

Recall if $\Delta^2 = 0$, $H^1(X; G) = \sum_{e_\alpha \in A} G$

Lemma: If
$$A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$
 is exact, then
 $Hom(A,G) \xleftarrow{f^*} Hom(B,G) \xleftarrow{g^*} Hom(C,G) \leftarrow 0$ is exact.

Proof:

Claim: g onto implies g^* is 1:1.

Suppose $g^*(\psi) = \psi \circ g = 0$. Since g is onto, $\psi(x) = 0$ for all $x \in C$. Thus $\psi = 0$ and g^* is 1:1.

Thus we have exactness at Hom(C, G).

Claim: im(f) = ker(g) implies $im(g^*) = ker(f^*)$.

 $im(f) \subset ker(g)$ implies $g \circ f = 0$ implies $f^* \circ g^* = (g \circ f)^* = 0^* = 0$ and thus $im(g^*) \subset ker(f^*)$.

Suppose $\psi \in ker(f^*), \psi : B \to G$. Then $f^*(\psi) = \psi \circ f = 0$. Thus $\psi(f(A)) = 0$ and ψ induces homomorphism $\psi' : B/f(A) \to G$

g induces an isomorphism $g': B/ker(g) = B/f(A) \to C$.

 $g^*(\psi'\circ (g')^{-1})=\psi'\circ (g')^{-1}\circ g=\psi$

Lemma: If $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ is split exact, then $0 \to Hom(A,G) \xleftarrow{f^*} Hom(B,G) \xleftarrow{g^*} Hom(C,G) \leftarrow 0$ is split exact. Proof: $\exists \pi : B \to A$ such that $\pi \circ f = id_A$. Thus $(\pi \circ f)^* = f^* \circ \pi^* = \text{identity on } Hom(A,G)$. Thus f^* is surjective and the dual sequence splits.

Note also that $Hom(\bigoplus A_{\alpha}, G) = \prod Hom(A_{\alpha}, G)$, and thus $Hom(A \bigoplus C, G) = Hom(A, G) \bigoplus Hom(C, G)$

Example: The dual of the exact sequence $0 \to \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \xrightarrow{\pi} \mathbb{Z}_2 \to 0$ $0 \leftarrow Hom(\mathbb{Z}, G) \xleftarrow{t^*} Hom(\mathbb{Z}, G) \xleftarrow{\pi^*} Hom(\mathbb{Z}_2, G) \leftarrow 0$ $\pi^*(\psi) = \psi \circ \pi : \mathbb{Z} \xrightarrow{\pi} \mathbb{Z}_2 \xrightarrow{\psi} G$, defined by $(\psi \circ \pi)(1) = \psi(1)$. $t^*(\psi) = \psi \circ t : \mathbb{Z} \xrightarrow{t} \mathbb{Z} \xrightarrow{\psi} G$, defined by $(\psi \circ t)(1) = \psi(2) = \psi(1) + \psi(1) = 2\psi(1)$. Defn: A **free resolution** of an abelian group H is an exact sequence of abelian groups,

$$\dots \xrightarrow{f_3} F_2 \xrightarrow{f_2} F_1 \xrightarrow{f_1} F_0 \xrightarrow{f_0} H \to 0$$

where each F_i is free.

Recall an exact sequence is a chain complex, and the dual of a chain complex is a chain complex.

Thus the dualization of this free resolution is a chain complex:

$$\dots \xleftarrow{f_2^*} Hom(F_1, G) \xleftarrow{f_1^*} Hom(F_0, G) \xleftarrow{f_0^*} Hom(H, G) \leftarrow 0$$

Let $H^n(F; G) = Ker(f_{n+1}^*)/im(f_n^*)$

Lemma 3.1: a.) Given two free resolutions F and F' of H and H', respectively, every homomorphism $\alpha : H \to H'$ can be extended to a chain map from F to F':

$$\dots \longrightarrow F_2 \longrightarrow F_1 \xrightarrow{\phi} F_0 \xrightarrow{\psi} H \longrightarrow 0$$

$$\exists \alpha_2 \downarrow^{\ } \exists \alpha_1 \downarrow^{\ } \exists \alpha_1 \downarrow^{\ } \exists \alpha_0 \downarrow^{\ } \downarrow^{\ } \downarrow \alpha$$

$$\dots \longrightarrow F_2' \longrightarrow F_1' \xrightarrow{\phi} F_0' \xrightarrow{\psi} H' \longrightarrow 0$$

Furthermore, any two such chain maps extending α are chain homotopic.

b.) For any two free resolutions F and F' of H, \exists canonical isomorphism $H^n(F;G) = H^n(F',G)$ for all n.

Example: A short exact sequence of abelian groups,

$$0 \to F_1 \to F_0 \to H \to 0$$

where F_i are free is called a **free resolution of** H.

Example: $0 \to B_p(X) \hookrightarrow Z_p(X) \to H_p(X) \to 0$

Example:

Let F_0 = the free abelian group generated by the generators of H. Let F_1 = kernel of projection map $F_0 \rightarrow H$.

Dual of the exact seq $0 \to F_1 \to F_0 \to H \to 0$ is the chain complex:

$$0 \xleftarrow{f_2^*} Hom(F_1, G) \xleftarrow{f_1^*} Hom(F_0, G) \xleftarrow{f_0^*} Hom(H, G) \leftarrow 0$$

Recall $F_1 \to F_0 \to H \to 0$ exact implies its dual is also exact:

$$Hom(F_1, G) \xleftarrow{f_1^*} Hom(F_0, G) \xleftarrow{f_0^*} Hom(H, G) \leftarrow 0$$

Note $H^n(F; G) = Ker(f_{n+1}^*)/im(f_n^*) = 0$ for $n > 1$.
And $H^0(F; G) = Ker(f_1^*)/im(f_0^*) = 0$.
But $H^1(F; G) = Ker(f_2^*)/im(f_1^*) = ?$.
Definition: $Ext(H, G) = H^1(F; G)$ (the extension of G by H).

For computational purposes, the following properties are useful.

- (a) $\operatorname{Ext}(H \oplus H', G) \cong \operatorname{Ext}(H, G) \oplus \operatorname{Ext}(H', G)$ since the direct sum of free resolutions is the free resolution of the direct sum.
- (b) $\operatorname{Ext}(H, G) = 0$ if H is free since $0 \to H \to H \to 0$ is a free resolution of H.
- (c) $\operatorname{Ext}(\mathbb{Z}/n, G) \cong G/nG$ by dualizing the free resolution $0 \to \mathbb{Z} \xrightarrow{n} \mathbb{Z} \to \mathbb{Z}_n \to 0$. to produce the exact sequence:

 $0 \leftarrow Ext(\mathbb{Z}_n, G) \leftarrow Hom(\mathbb{Z}, G) \xleftarrow{n} Hom(\mathbb{Z}, G) \leftarrow Hom(\mathbb{Z}_n, G) \leftarrow 0$

Theorem 1. If a chain complex C_{\bullet} of free abelian groups has homology groups $H_{\bullet}(C)$, then the cohomology groups $H^{\bullet}(C;G)$ of the cochain complex $\text{Hom}(C_{\bullet},G)$ are determined by the split exact sequences

$$0 \longrightarrow \operatorname{Ext}(H_{n-1}(C), G) \longrightarrow H^n(C; G) \xrightarrow{h} \operatorname{Hom}(H_n(C), G) \longrightarrow 0.$$

Corollary 1. If the homology groups H_n and H_{n-1} of a chain complex C of free abelian groups are finitely generated, with torsion subgroups $T_n \subset H_n$ and $T_{n-1} \subset H_n$, then

$$H^n(C;Z) \cong (H_n/T_n) \oplus T_{n-1}.$$

Corollary 2. If a chain map between chain complexes of free abelian groups induces an isomorphism on homology groups, then it induces an isomorphism on cohomology groups with any coefficient group G.