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4 CONTENTS

Below is a set of guidelines which were used in the compilation of this document. They do not
reflect any absolute practice in typesetting, but merely the combination of my own customs
and some rational decisions which I took to standardize various parts of the document.

• When taking notes from a book, try to copy all definitions, propositions, theorems,
and important remarks. Do not hesitate to add your own relevant observations as
these could facilitate the learning process.
• If there is a change of sentence structure which would simplify the statement of

results, then apply that.
• When the book in question is slightly old (e.g., Rudin, Real and Complex Analysis),

we should change mathematical notation in order to update the text.
• Use as many of the predefined customizations as possible.
• Avoid the use of “one-to-one” and “onto”. Instead replace these with “injective”

and “surjective” respectively.
• Attempt to utilize any standard modern notation, e.g. S1, Lie groups, etc.
• If it is customary to use employ certain symbols for an object, then attempt to do

so.
• Use \ for the difference of sets instead of −.
• Use \cn (without the customizations \colon) for colons in functions, that is, visually
f : X → Y looks better than f : X → Y (note the difference in spacing before the
colon).
• Be consistent with wording and spelling. For example, use holomorphic instead

of analytic throughout. On a similar note, hyphenate “non” constructions such as
“non-constant” and “non-vanishing”.

TODO:

• Add “subsubsections” which will not display in the table of contents. This is done
to logically separate the various results in a chapter.
• Check all files and convert adjectives “nonX” to “non-X”.



CHAPTER 1

Notes

1. Algebraic Topology

Syllabus

Undergraduate: Hatcher, Algebraic Topology, chapter 1 (but not the additional top-
ics). (math 131)

Graduate: Hatcher, Algebraic Topology, chapter 2 (including additional topics) and
chapter 3 (without additional topics). (math 231a)

1.1. Hatcher, Chapter 0: Some Underlying Geometric Notions.

Definition 1.1.1. The join of two topological spaces X and Y , denoted X ∗ Y , is the
quotient of X×Y ×I under the identifications (x, y1, 0) ∼ (x, y2, 0) and (x1, y, 1) ∼ (x2, y, 1).
In other words, this amount to collapsing X ×Y ×{0} to X and X ×Y ×{1} to Y . On can
also think of the join as the set of formal linear combinations t1x + t2y for x ∈ X, y ∈ Y ,
t1, t2 ∈ R satisfying t1 + t2 = 1. Alternatively, one may think of it as the collection of all line
segments joining points in X with points in Y .

The join is an associative operation. Two useful examples are:

(i) the n-fold join of the one point space is the (n− 1)-simplex ∆n−1;
(ii) the n-fold join of the two point space S0 is the (n− 1)-sphere Sn−1.

Proposition 1.1.2. If (X,A) is a CW pair and A is a contractible subcomplex, then the
quotient map X → X/A is a homotopy equivalence.

Compare this with the following.

Proposition 1.1.3. If (X,A) is a CW pair and A is a contractible in X, that is, the inclusion
A ↪→ X is homotopic to the constant map, then X/A ' X ∨ SA.

Proposition 1.1.4. If (X1, A) is a CW pair and the two attaching maps f, g : A→ X0 are
homotopic, then X0 tf X1 ' X0 tg X1.

A pair of topological spaces (X,A) is said to have the homotopy extension property if given
a map f0 : X → Y and a homotopy gt : A→ Y for 0 ≤ t ≤ 1 satisfying f0|A = g0, then there
exists a homotopy ft : X → A for 0 ≤ t ≤ 1 satisfying ft|A = gt for all t.

Proposition 1.1.5. A pair (X,A) has the homotopy extension property if and only if
X × {0} ∪ A× I is a deformation retract of X × I.

Proposition 1.1.6. All CW pairs (X,A) have the homotopy extension property.
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6 1. NOTES

Proposition 1.1.7. Suppose the pairs (X,A) and (Y,A) satisfy the homotopy extension
property, and f : X → Y is a homotopy equivalence with f |A = idA. Then f is a homotopy
equivalence rel A.

Corollary 1.1.8. If (X,A) satisfies the homotopy extension property and the inclusion
A ↪→ X is a homotopy equivalence, then A is a deformation retract of X.

Corollary 1.1.9. A map f : X → Y is a homotopy equivalence if and only if X is a
deformation retract of the mapping cylinder Mf . Hence, two spaces X and Y are homotopy
equivalent if and only if there is a third space containing both X and Y as deformation
retracts.

1.2. Hatcher, Chapter 1: The Fundamental Group.
1.2.1. Basic Constructions.

Proposition 1.2.1. Let X be a topological space, and h a path from x0 to x1 in X. Then
the map βh : π1(X, x1)→ π1(X, x0) given by βh[f ] = [h · f · h] is an isomorphism.

Theorem 1.2.2 (Brouwer Fixed Point Theorem). Every continuous map h : D2 → D2 has
a fixed point.

Theorem 1.2.3 (Borsuk-Ulam). For every continuous map f : S2 → R2 there exists a pair
of antipodal points x and −x with f(x) = f(−x).

Corollary 1.2.4. There is no injective continuous map S2 → R2, and hence S2 is not
homeomorphic to any subset of R2.

Corollary 1.2.5. Whenever S2 is expressed as the union of three closed sets A1, A2, and
A3, then at least one of these sets must contain a pair of antipodal points {x,−x}.
Proposition 1.2.6. π1(X × Y, (x0, y0)) ∼= π1(X, x0)× π1(Y, y0)
Proposition 1.2.7. If n ≥ 2, then π1(S

n) = 0.

Proposition 1.2.8. If a spaceX retracts onto a spaceA, then the homomorphism i∗ : π1(A, x0)→
π1(X, x0) induced by the inclusion i : A→ X is injective. If A is a deformation retract of X,
then i∗ is an isomorphism.

Proposition 1.2.9. If ϕ : X → Y is a homotopy equivalence, then the induced homomor-
phism ϕ∗ : π1(X, x0)→ π1(Y, ϕ(x0)) is an isomorphism for all x0 ∈ X.

1.2.2. Van Kampen’s Theorem.

Theorem 1.2.10 (Seifert–van Kampen). If X is the union of path-connected open sets Aα
each containing the basepoint x0 ∈ X and if each intersection Aα∩Aβ is path-connected, then
the homomorphism Φ:

∐
α π1(Aα) → π1(X) is surjective. If in addition each intersection

Aα ∩ Aβ ∩ Aγ is path-connected, then the kernel of Φ is the normal subgroup N generated
by all elements of the form iαβ(ω)iβα(ω)−1 for ω ∈ π1(Aα ∩ Aβ), and hence Φ induces an
isomorphism π1(X) ∼=

∐
α π1(Aα)/N .

Proposition 1.2.11. Suppose we attach a collection of 2-cells e2α to a path-connected space
X via maps ϕα : S1 → X, producing a space Y . Fix basepoints s0 ∈ S1 and x0 ∈ X. Choose
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a path γα from x0 to ϕ(s0) for each α so that γαϕαγα is a loop in X based at x0. Then the
inclusion X ↪→ Y induces a surjection π1(X, x0) → π1(Y, x0) whose kernel is generated by
the loops γαϕαγα.

Corollary 1.2.12. For every group G there is a 2-dimensional CW complex XG with
π1(XG) ∼= G.

For Σg = (T 2)#g and Ng = (RP2)#g, we have

π1(Σg) = 〈a1, b1, . . . , ag, bg | a1b1a−11 b−11 · · · agbga−1g b−1g 〉,
π1(Ng) = 〈a1, . . . , ag | a21 · · · a2g〉.

Corollary 1.2.13. The surfaces Σg and Σh are homotopy equivalent if and only if g = h.

1.2.3. Covering Spaces.

Proposition 1.2.14 (Homotopy lifting property). Given a covering space p : X̃ → X, a

homotopy ft : Y → X, and a map f̃0 : Y → X̃ lifting f0, then there exists a unique homotopy

f̃t : Y → X̃ of f̃0 that lifts ft.

When Y is a point, the previous results is also known as the path lifting property. Concretely,
for each path f : I → X and each lift x̃0 of the starting point x0 = f(0), there is a unique

path f̃ : I → X̃ lifting f and starting at x̃0.

Proposition 1.2.15. The map p∗ : π1(X̃, x̃0)→ π1(X, x0) induced by a covering p : (X̃, x̃0)→
(X, x0) is injective. The image subgroup p∗(π1(X̃, x̃0)) in π1(X, x0) consists of the homotopy

classes of loops in X based at x0 whose lifts to X̃ starting at x̃0 are loops.

Proposition 1.2.16. The number of sheets of a covering space p : (X̃, x̃0) → (X, x0) with

X and X̃ path-connected equals the index of p∗(π1(X̃, x̃0)) in π1(X, x0).

Proposition 1.2.17 (Lifting criterion). Let p : (X̃, x̃0) → (X, x0) be a covering space and
f : (Y, y0) → (X, x0) a map with Y path-connected and locally path-connected. Then a lift

f̃ : (Y, y0)→ (X̃, x̃0) of f exists if and only if f∗(π1(Y, y0)) ⊂ p∗(π1(X̃, x̃0)).

Proposition 1.2.18 (Unique lifting property). Given a covering space p : X̃ → X and a

map f : Y → X, if two lifts f̃1, f̃2 : Y → X̃ of f agree at one point of Y and Y is connected,

then f̃1 = f̃2.

Proposition 1.2.19. Suppose X is a path-connected, locally path-connected, and semilo-
cally simply-connected. Then for every subgroup H ⊂ π1(X, x0) there is a covering space
p : XH → X such that p∗(π1(XH , x̃0)) = H for a suitably chosen basepoint x̃0 ∈ XH .

Corollary 1.2.20. Any topological space which is path-connected, locally-path connected,
and semilocally simply-connected admits a universal cover.

Proposition 1.2.21. If X is path-connected and locally path-connected, then two path-

connected covering spaces p1 : X̃1 → X and p2 : X̃2 → X are isomorphic via an isomorphism
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f : X̃1 → X̃2 taking a basepoint x̃1 ∈ p−11 (x0) to a basepoint x̃2 ∈ p−12 (x0) if and only if

(p1)∗(π1(X̃1, x̃1)) = (p2)∗(π1(X̃2, x̃2)).

Theorem 1.2.22. Let X be path-connected, locally path-connected, and semilocally path-
connected. Then there is a bijection between the set of basepoint-preserving isomorphism

classes of path-connected covering spaces p : (X̃, x̃0) → (X, x0) and the set of subgroups of

π1(X, x0), obtained by associating the subgroup p∗(π1(X̃, x̃0)) to the covering space (X̃, x̃0).
If basepoints are ignored, this correspondence gives a bijection between the isomorphism

classes of path-connected covering spaces p : X̃ → X and conjugacy classes of subgroups of
π1(X, x0).

Theorem 1.2.23. Let X be a topological space satisfying the hypothesis of the previous
result. The set of n-sheeted covering spaces (not necessarily connected) of X endowed with
basepoints is in bijection with the set of homomorphisms π1(X, x0)→ Sn, where Sn stands for
the symmetric group on n symbols. If we drop basepoints then there is a bijection with the set
of homomorphisms up to conjugation, that is, two homomorphisms ϕ1, ϕ2 : π1(X, x0) → Sn
correspond to equivalent covers if and only if ϕ1 ◦ ϕ−12 is an inner automorphism of Sn.

Definition 1.2.24. For a covering space p : X̃ → X, an automorphism of covers X̃ → X̃ is

called a deck transformation. These form a group denoted Aut(X̃/X).

Definition 1.2.25. A covering space p : X̃ → X is called normal if for each x1, x2 ∈ X̃

satisfying p(x1) = p(x2) there exists a deck transformation ϕ ∈ Aut(X̃/X) such that ϕ(x1) =
x2.

Proposition 1.2.26. Let p : (X̃, x̃0) → (X, x0) be a path-connected covering space of a

path-connected, locally path-connected space X, and let H be the subgroup p∗(π1(X̃, x̃0)) ⊂
π1(X, x0). Then:

(a) this covering space is normal if and only if H is a normal subgroup of π1(X, x0);

(b) Aut(X̃/X) is isomorphic to the quotient N(H)/H where N(H) is the normalizer of H
in π1(X, x0).

In particular, Aut(X̃/X) is isomorphic to π1(X, x0)/H if X̃ is a normal covering. Hence for

the universal cover X̃ → X we have Aut(X̃/X) ∼= π1(X).

Definition 1.2.27. A group action of a group G on a topological space Y is called a covering
space action if the following condition holds: each y ∈ Y has a neighbourhood U such that
all the images g(U) for varying g ∈ G are disjoint. In other words, g1(U)∩g2(U) 6= ∅ implies
g1 = g2.

Note that for each covering X̃ → X the action of Aut(X̃/X) on X̃ is a covering space action.

Proposition 1.2.28. Each covering action of a group G on a space Y satisfies the following:

(a) the quotient map p : Y → Y/G, p(y) = Gy, is a normal covering space;
(b) if Y is path-connected, then G is the group of deck transformations of this covering space

Y → Y/G;
(c) if Y is path-connected and locally path-connected, thenG is isomorphic to π1(Y/G)/p∗(π1(Y )).
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For each m,n ≥ 1 there is a covering space Σmn+1 → Σm+1. Conversely, if there is a covering
Σg → Σh then g = mn+ 1 and h = m+ 1 for some m,n ≥ 1.

Proposition 1.2.29. Consider maps X → Y → Z such that both Y → Z and the compo-
sition X → Z are covering spaces. If Z is locally path-connected, then X → Y is a covering
space. Furthermore, if X → Z is normal, then so is X → Y .

Proposition 1.2.30. Consider a covering action of a group G on a path-connected, locally
path-connected space X. Then any subgroup H ⊂ G determines a composition of covering
spaces X → X/H → X/G. Furthermore, the following properties hold.

(a) Every path-connected covering space between X and X/G is isomorphic to X/H for
some subgroup H ⊂ G.

(b) Two such covering spaces X/H1 and X/H2 of X/G are isomorphic if and only if H1 and
H2 are conjugate subgroups of G.

(c) The covering space X/H → X/G is normal if and only if H is a normal subgroup of G,
in which case the group of deck transformations of this cover is G/H.

1.3. Hatcher, Chapter 2: Homology.
1.3.1. Simplicial and Singular Homology.

Proposition 1.3.1. Consider the decomposition of a topological space X into its path-
components X =

⊔
αXα. Then H•(X) ∼=

⊕
αH•(Xα).

Theorem 1.3.2 (Exact sequence of a pair). For every pair (X,A), we have a long exact
sequence

· · · // Hn(A) // Hn(X) // Hn(X,A)
∂ // Hn−1(A) // · · · .

The connecting homomorphism ∂ : Hn(X,A)→ Hn−1(A) has a simple description: if a class
[α] ∈ Hn(X,A) is represented by a relative cycle α, then ∂[α] = [∂α] ∈ Hn−1(A).

The following is a mild generalization.

Theorem 1.3.3 (Exact sequence of a triple). For every triple (X,A,B), we have a long
exact sequence

· · · // Hn(A,B) // Hn(X,B) // Hn(X,A)
∂ // Hn−1(A,B) // · · · .

Theorem 1.3.4 (Excision). Given subspaces Z ⊂ A ⊂ X such that the closure of Z is con-
tained in the interior of A, then the inclusion (X \Z,A\Z) ↪→ (X,A) induces isomorphisms
Hn(X \Z,A\Z)→ Hn(X,A) for all n. Equivalently, for subspaces A,B ⊂ X whose interiors
cover X, the inclusion (B,A∩B) ↪→ (X,A) induces isomorphisms Hn(B,A∩B)→ Hn(X,A)
for all n.

We call a pair (X,A) good if A is a nonempty closed subspace and it is the deformation
retract of a neighbourhood.

Proposition 1.3.5. For good pairs (X,A), the quotient map q : (X,A) → (X/A,A/A)

induces isomorphisms q∗ : Hn(X,A)→ Hn(X/A,A/A) ∼= H̃n(X/A) for all n.
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Theorem 1.3.6. If (X,A) is a good pair, then there is an exact sequence

· · · // H̃n(A) // H̃n(X) // H̃n(X/A)
∂ // H̃n−1(A) // · · · .

Corollary 1.3.7. If the CW complex X is the union of subcomplexes A and B, then the
inclusion (B,A ∩B) ↪→ (X,A) induces isomorphisms Hn(B,A ∩B)→ Hn(X,A) for all n.

Corollary 1.3.8. For a wedge sum
∨
αXα, the inclusions iα : Xα →

∨
αXα induce an

isomorphism ⊕
α

(iα)∗ :
⊕
α

H̃•(Xα)→ H̃•

(∨
α

Xα

)
,

provided that the wedge sum is formed at basepoints xα ∈ Xα such that the pairs (Xα, xα)
are good.

Theorem 1.3.9. If nonempty subsets U ⊂ Rm and V ⊂ Rn are homeomorphic, then m = n.

Proposition 1.3.10. If A is a retract of X, then the maps Hn(A) → Hn(X) induced by
the inclusion A ↪→ X are injective.

Corollary 1.3.11. There exists no retraction Dn → Sn.

Corollary 1.3.12 (Brouwer Fixed Point Theorem). Every continuous map h : Dn → Dn

has a fixed point.

Proposition 1.3.13. For all n, there are isomorphisms H̃n(X) ∼= H̃n+1(SX).

Proposition 1.3.14. Let X be a finite-dimensional CW complex.

(a) If X has dimension n, then Hi(X) = 0 for i > n and Hn(X) is free.
(b) If there are no cells of dimension n−1 or n+1, then Hn(X) is free with basis in bijective

correspondence with the n-cells.
(c) If X has k n-cells, then Hn(X) is generated by at most k elements.

1.3.2. Computations and Applications.

Definition 1.3.15. Each map f : Sn → Sn induces a homomorphism f∗ : Hn(Sn)→ Hn(Sn)
which is multiplication by an integer d called the degree of f denoted deg f .

Proposition 1.3.16.

(a) deg idSn = 1.
(b) If f is not surjective, then deg f = 0.
(c) If f ' g, then deg f = deg g.
(d) deg(f ◦ g) = deg f deg g.
(e) If f is the reflection in Sn−1 of Sn, then deg f = −1.
(f) The antipodal map has degree (−1)n+1.
(g) If f : Sn → Sn has no fixed points, then deg f = (−1)n+1.
(h) If Sf : Sn+1 → Sn+1 denotes the suspension map of f : Sn → Sn, then degSf = deg f .

Theorem 1.3.17. A continuous nonvanishing vector field on Sn exists if and only if n is
odd.
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Proposition 1.3.18. If n is even, then Z/2 is the only nontrivial group that can act freely
on Sn.

Proposition 1.3.19. Let f : Sn → Sn be a continuous map, and y ∈ Sn be a point whose
preimage is finite, say f−1(y) = {x1, . . . , xm}. Let U1, . . . , Um be disjoint neighbourhoods
of the xi mapped homeomorphically to a neighbourhood V of y. The local degree of f at
xi, denoted deg f |xi , is an integer d such that f∗ : Hn(Ui, Ui \ {xi}) → Hn(V, V \ {y}) is
multiplication by d. Then deg f =

∑
i deg f |xi .

Proposition 1.3.20. Let X be a CW complex.

(a) H•(X
n, Xn−1) ∼= Z`(n) where ` is the number of n-cells of X (potentially infinite).

(b) Hk(X
n) = 0 if k > n. In particular, if X is finite dimensional, then Hk(X) = 0 for

k > dimX.
(c) The inclusion i : Xn ↪→ X induces isomorphisms i∗ : Hk(X

n)→ Hk(X) for k < n.

There is an alternative formulation of homology which makes it easy to compute. For any
CW complex X there is a chain complex

· · · // Hn+1(X
n+1, Xn)

dn+1 // Hn(Xn, Xn−1)
dn // Hn−1(X

n−1, Xn−2) // · · · .

The homology of this complex, denoted HCW
n (X), is called cellular homology. Note that

Hn(Xn, Xn−1) is a free abelian group generated by the n-cells of X. The differentials dn can
be computed by dn(enα) =

∑
β dαβe

n−1
β where dαβ is the degree of the map Sn−1α → Xn−1 →

Sn−1β that is the composition of the attaching map of enα with the quotient map collapsing

Xn−1 \ en−1β to a point.
The following computations follow.

H•(Σg) ∼= Z(0) ⊕ Z2g
(1) ⊕ Z

H•(Ng) ∼= Z(0) ⊕ (Zg−1 ⊕ Z/2)(1)

Hk(RPn) ∼=


Z if k = 0 and if k = n is odd,

Z/2 if k is odd and 0 < k < n,

0 otherwise.

Hk(Lm(`1, . . . , `n)) ∼=


Z if k = 0 or 2n− 1,

Z/m if k is odd and 0 < k < 2n− 1,

0 otherwise.

Theorem 1.3.21. HCW
• (X) ∼= H•(X).

For an abelian group G and an integer n ≥ 1, we can construct a CW complex X satisfying

H̃•(X) ∼= G(n). Furthermore, it can be shown that the homotopy type of X is uniquely
determined by the previous condition (provided that for n > 1, we require X to be simply-
connected), hence we will refer to X as a Moore space and denote it by M(G, n).
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Theorem 1.3.22. For finite CW complexes X, the Euler characteristic is

χ(X) =
∑
n

(−1)n rankHn(Xn, Xn−1) =
∑
n

(−1)n rankHn(X).

For example,

χ(Σg) = 2− 2g, χ(Ng) = 2− g.

Suppose r : X → A is a retraction and i : A→ X the associated inclusion. We have already
shown that i∗ : H•(A)→ H•(X) is injective, hence the long exact sequence of the pair (X,A)
splits into short exact sequences

0 // Hn(A) // Hn(X) // Hn(X,A) // 0.

Furthermore, the relation r∗i∗ = idH•(A) implies the above short exact sequences are split.

Proposition 1.3.23 (Split short exact sequences). For a short exact sequence

0 // A
i // B

j // C // 0

of abelian groups the following statements are equivalent:

(a) there is a homomorphism p : B → A such that p ◦ i = idA;
(b) there is a homomorphism s : C → B such that j ◦ s = idC ;
(c) there is an isomorphism B ∼= A⊕ C making the diagram

B j

((∼=
��

0 // A

i
66

((
C // 0

A⊕ C

66

commute, where the maps in the lower row are the obvious projections.

Theorem 1.3.24 (Mayer-Vietoris sequence). Let X be a topological space and A,B ⊂ X
two subspaces such that their interiors cover X. Then there is a long exact sequence as
follows.

· · · // Hn(A ∩B) // Hn(A)⊕Hn(B) // Hn(X)
∂ // Hn−1(A ∩B) // · · ·

The connecting homomorphism ∂ : Hn(X) → Hn−1(A ∩ B) has the following explicit form.
Consider a class α ∈ Hn(X) represented by a cycle z. By further subdivision we can ensure
that z = x + y such that x lies in A and y in B. Note that x and y need not be cycles
themselves, but ∂x = −∂y. Then ∂α ∈ Hn−1(A∩B) is represented by a the cycle ∂x = −∂y.

There is also a similar sequence in reduced homology. Even further, we can take A and B
to be deformation retracts of neighbourhoods U and V respectively satisfying X = U ∩ V .
This is particularly useful when X is a CW complex and A and B subcomplexes since U
and V as described always exist. The following can often be viewed as a generalization of
the Mayer-Vietoris sequence.
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Theorem 1.3.25. Consider two maps f, g : X → Y and form the space Z = (X × I t Y )/∼
by identifying (x, 0) ∼ f(x) and (x, 1) ∼ g(x) for all x ∈ X. Less formally, we can describe
Z as X× I glued to Y at one end via f and at the other via g. Let i : Y ↪→ Z be the evident
inclusion. Then there is a long exact sequence as follows.

· · · // Hn(X)
f∗−g∗ // Hn(Y )

i∗ // Hn(Z)
∂ // Hn−1(X) // · · ·

Theorem 1.3.26 (Relative Mayer-Vietoris sequence). Let (X, Y ) = (A ∪ B,C ∪ D) such
that: (1) C ⊂ A, (2) D ⊂ B, (3) X is the union of the interiors of A and B, and (4) Y the
union of the interiors of C and D. Then there is a long exact sequence in relative homology
as follows.

· · · // Hn(A ∩B,C ∩D) // Hn(A,C)⊕Hn(B,D) // Hn(X, Y ) // Hn−1(A ∩B,C ∩D) // · · ·

All variants of the Mayer-Vietoris sequence hold for reduced homology too. Furthermore,
all preceding results in this section generalize to homology with coefficients.

1.3.3. The Formal Viewpoint.

Definition 1.3.27. A (reduced) homology theory is a sequence is covariant functors h̃n from
the category of CW complexes to the category of abelian groups which satisfy the following
axioms.

(1) If f ' g, then f∗ = g∗ : h̃n(X)→ h̃n(Y ).

(2) There are boundary homomorphisms ∂ : h̃n(X/A)→ h̃n−1(A) defined for each CW pair
(X,A), fitting into an exact sequence

· · · ∂ // h̃n(A)
i∗ // h̃n(X)

q∗ // h̃n(X/A)
∂ // h̃n−1(A)

i∗ // · · · ,

where i : A → X and q : X → X/A are respectively the evident inclusion and quotient
maps. Furthermore, the boundary mas are natural: for f : (X,A) → (Y,B) inducing a
quotient map f : X/A→ Y/B, the diagrams

h̃n(X/A)
∂ //

f∗
��

h̃n−1(A)

f∗
��

h̃n(Y/B)
∂ // h̃n−1(B)

commute.
(3) For a wedge sum X =

∨
αXα with inclusions iα : Xα ↪→ X, the direct sum map⊕

α

(iα)∗ :
⊕
α

h̃n(Xα)→ h̃n(X)

is an isomorphism for all n.

1.3.4. Homology and Fundamental Group.

Theorem 1.3.28 (Hurewicz Theorem). By regarding loops as singular 1-cycles, we obtain
a homomorphism h : π1(X, x0) → H1(X). If X is path-connected, then h is surjective
and has kernel the commutator subgroup of π1(X), so h induces an isomorphism between
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the abelianization of π1(X) onto H1(X). If γ : S1 → X is a loop, then the map h may
alternatively be described as h[γ] = γ∗(α) where α is the (oriented) generator of H1(S

1).

1.3.5. Classical Applications.

Proposition 1.3.29.

(a) For an embedding h : Dk → Sn, we have H̃•(S
n \ h(Dk)) = 0.

(b) For an embedding h : Sk → Sn with k < n, we have H̃•(S
n \ h(Sk)) ∼= Z(n−k−1).

Theorem 1.3.30 (Invariance of Domain). If U is an open set in Rn, then for any embedding
h : U → Rn the image h(U) must be an open set in Rn. The statement holds if we replace
Rn with Sn throughout.

Corollary 1.3.31. If M is a compact n-manifold and N a connected n-manifold, then an
embedding h : M → N must be surjective, hence a homeomorphism.

Theorem 1.3.32 (Hopf). The only finite-dimensional division algebras over R which are
commutative and have an identity are R and C.

Proposition 1.3.33. An odd map f : Sn → Sn, satisfying f(−x) = −f(x) for all x ∈ Sn,
must have odd degree. The claim also holds if we replace odd with even throughout.

Proposition 1.3.34. If p : X̃ → X is a two-sheeted cover, then there is a long exact sequence
as follows.

· · · // Hn(X;Z/2)
τ∗ // Hn(X̃;Z/2)

p∗ // Hn(X;Z/2) // Hn−1(X;Z/2) // · · ·

The map τ∗, called the transfer homomorphism, is given by summing up the two lifts of a
given chain.

Corollary 1.3.35 (Borsuk-Ulam). For every map g : Sn → Rn there exists a point x ∈ Sn
such that g(x) = g(−x).

1.3.6. Simplicial Approximation.

Theorem 1.3.36 (Simplicial approximation). If K is a finite simplicial complex and L an
arbitrary simplicial complex, then any map f : K → L is homotopic to a map that is
simplicial with respect to some iterated barycentric subdivision of K.

For a map ϕ : Zn → Zn we define its trace trϕ in the usual sense. More generally, consider
a finitely generated abelian group A with torsion part AT . For any ϕ : A → A, we define
trϕ = trϕ where ϕ : A/AT → A/AT is the induced map mod torsion.

Definition 1.3.37. Let X be a finite CW complex and f : X → X a continuous map. The
Lefschetz number of f is

τ(f) =
∑
i

(−1)n tr(f∗ : Hn(X)→ Hn(X)).

Note that τ(idX) = χ(X).
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Theorem 1.3.38 (Lefschetz Fixed Point Theorem). If X is a finite simplicial complex, or
more generally a retract of a finite simplicial complex, and f : X → X a map with τ(f) 6= 0,
then f has a fixed point.

It is the case that every compact, locally contractible space that can be embedded in Rn

for some n is a retract of a finite simplicial complex. In particular, this includes compact
manifolds and finite CW complexes.

Theorem 1.3.39 (Simplicial Approximation to CW Complexes). Every CW complex X
is homotopy equivalent to a simplicial complex, which can be chosen to be of the same
dimension as X, finite if X is finite, and countable if X is countable.

1.4. Hatcher, Chapter 3: Cohomology.
1.4.1. Cohomology Groups. The homology of a space X is customarily constructed in

two steps: (1) form a chain complex C•(X) (simplicial, singular, cellular, etc.), and then (2)
take its homology. To make the transition to cohomology, one needs to dualize after step
(1). In other words, assuming we are going to work with coefficients over an abelian group
G, we first form C•(X;G) = Hom(C•;G). The homology of this complex is then denoted
H•(X;G). We proceed to investigate the relation between H•(X;G) and Hom(H•(X), G).

Theorem 1.4.1. If a chain complex C• of free abelian groups has homology groups H•(C),
then the cohomology groups H•(C;G) of the cochain complex Hom(C•, G) are determined
by the split exact sequences

0 // Ext(Hn−1(C), G) // Hn(C;G)
h // Hom(Hn(C), G) // 0.

The Ext(H,G) groups are defined in the following fashion. Every abelian group has a
free resolution 0 → F1 → F0 → H → 0. We apply the functor Hom(−, G) to it and
take homology. It turns out that the cohomology is nontrivial only in degree 1 (this is
specific to the category of abelian groups Z-mod), and we define Ext(H,G) = H1(H;G) =
H1(Hom(F•, G)). For computational purposes, the following properties are useful.

(a) Ext(H ⊕H ′, G) ∼= Ext(H,G)⊕ Ext(H ′, G).
(b) Ext(H,G) = 0 if H is free.
(c) Ext(Z/n,G) ∼= G/nG.

The following result summarizes the above facts when G = Z.

Corollary 1.4.2. If the homology groups Hn and Hn−1 of a chain complex C of free abelian
groups are finitely generated, with torsion subgroups Tn ⊂ Hn and Tn−1 ⊂ Hn, then

Hn(C;Z) ∼= (Hn/Tn)⊕ Tn−1.
Corollary 1.4.3. If a chain map between chain complexes of free abelian groups induces
an isomorphism on homology groups, then it induces an isomorphism on cohomology groups
with any coefficient group G.

A large number of the results from the previous chapter hold for cohomology – one only
needs to reverse the direction of sequences.
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1.4.2. Cup Product. Unlike the general theories of homology and cohomology in which
coefficients could be taken in an arbitrary abelian group, we are required to work over a
commutative ring R in order to define cup products. For cochains ϕ ∈ Ck(X;R) and
ψ ∈ C`(X;R), the cup product ϕ ` ψ ∈ Ck+`(X;R) is the cochain whose value on a
singular simplex σ : ∆k+` → X is given by the formula

(ϕ ` ψ)(σ) = ϕ(σ|[v0,...,vk]) · ψ(σ|[vk,...,vk+`]).

Proposition 1.4.4. For ϕ ∈ Ck(X;R) and ψ ∈ C`(X;R), we have

δ(ϕ ` ψ) = δϕ ` ψ + (−1)kϕ ` δψ.

The previous result implies that the cup product of two cocycles is again a cocycle, and
the cup product of a cocycle and a coboundary (in either order) is again a coboundary.
Therefore, the cup product on cochains induces a cup product on cohomology, namely

Hk(X;R)×H`(X;R)
` // Hk+`(X;R).

Associativity and distributivity on the level of cochains implies these properties for the
product on cohomology too. If R is unital, then there is an identity for the cup product –
the class 1 ∈ H0(X;R) defined by the 0-cocycle taking the value 1 on each singular 0-simplex.
There is a relative version of the cup product which takes the form

Hk(X,A;R)×H`(X,B;R)
` // Hk+`(X,A ∪B;R),

and this specializes to

Hk(X,A;R)×H`(X;R)
` // Hk+`(X,A;R),

Hk(X;R)×H`(X,A;R)
` // Hk+`(X,A;R),

Hk(X,A;R)×H`(X,A;R)
` // Hk+`(X,A;R).

Proposition 1.4.5. For a map f : X → Y , the induced maps f ∗ : Hn(Y ;R) → Hn(X;R)
satisfy f ∗(α ` β) = f ∗(α) ` f ∗(β), and similarly in the relative case.

This prompts us to note that we can regard H•(−;R) as a functor from the category of
topological spaces to the category of graded R-algebras. We proceed summarize a few
common cohomology rings.

H•(RPn;Z/2) ∼= (Z/2)[α]/(αn+1), |α| = 1

H•(RP∞;Z/2) ∼= (Z/2)[α], |α| = 1

H•(CPn;Z) ∼= Z[α]/(αn+1), |α| = 2

H•(CP∞;Z) ∼= Z[α], |α| = 2

H•(HPn;Z) ∼= Z[α]/(αn+1), |α| = 4

H•(HP∞;Z) ∼= Z[α], |α| = 4
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The cohomology of real projective spaces over Z are slightly more delicate.

H•(RP2n;Z) ∼= Z[α]/(2α, αn+1), |α| = 2

H•(RP2n+1;Z) ∼= Z[α, β]/(2α, αn+1, β2, αβ), |α| = 2, |β| = 2n+ 1

H•(RP∞;Z) ∼= Z[α]/(2α), |α| = 2

Proposition 1.4.6. The isomorphisms

H•(
⊔
αXα;R) //

∏
αH

•(Xα;R)

H̃•(
∨
αXα;R) //

∏
α H̃

•(Xα;R)

whose coordinates are induced by the inclusions iα : Xα ↪→
⊔
αXα and iα : Xα ↪→

∨
αXα

respectively are ring isomorphisms.

The second isomorphism above provides us with a tool to reject spaces as being homotopy
equivalent to wedge products.

Theorem 1.4.7. When R is commutative, the rings H•(X,A;R) are graded commutative,
that is, the identity

α ` β = (−1)k`β ` α

holds for all α ∈ Hk(X,A;R) and β ∈ H`(X,A;R).

The cross product, also known as the external cup product, is a map

Hk(X;R)×H`(Y ;R)
× // Hk+`(X × Y ;R)

given by

a× b = p∗1(a) ` p∗2(b),

where p1 : X×Y → X and p2 : X×Y → Y are the evident projections. It is not hard to see
this map is bilinear, hence induces a linear map Hk(X;R)⊗H`(Y ;R)→ Hk+1(X × Y ;R).

Theorem 1.4.8 (Künneth formula). The cross product H•(X;R)⊗RH•(Y ;R)→ H•(X ×
Y ;R) is an isomorphism of rings if X and Y are CW complexes and Hk(Y ;R) is a finitely
generated free R-module for all k.

It turns out the hypothesis X and Y are CW complexes is unnecessary. The result also hold
in a relative setting.

Theorem 1.4.9 (Relative Künneth formula). For CW pairs (X,A) and (Y,B) the cross
product homomorphism H•(X,A;R)⊗RH•(Y,B;R)→ H•(X ×Y,A×Y ∪X ×B;R) is an
isomorphism of rings if Hk(Y,B;R) is a finitely generated free R-module for each k.

The relative version yields a reduced one which involves the smash product X ∧ Y .

Theorem 1.4.10. If Rn has the structure of a division algebra over R, then n must be a
power of 2.
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1.4.3. Poincaré Duality. Fix a coefficient ring R. For any space X and any subset A ⊂ X,
the local homology of X at A is H•(X|A;R) = H•(X,X \A;R) and similarly for cohomology.
As usual, omitting R means we are working over Z.

Definition 1.4.11. A compact manifold without boundary is called closed.

Theorem 1.4.12. The homology groups of a closed manifold are finitely generated.

From now on, consider a manifold M . It is easy to see that H•(M |x;R) ∼= R(n) for all x ∈M .
An R-orientation of M at x is a choice of a generator µx ∈ Hn(M |x;R). An R-orientation
at a point x determines R-orientations for all y in a neighbourhood B (open ball of finite
radius) of x via the canonical isomorphisms

Hn(M |y;R) ∼= Hn(M |B;R) ∼= Hn(M |x;R).

An R-orientation of M is a consistent choice of local R-orientations at all x ∈ M . This is
better handled via the space

MR = {µx ∈ Hn(M |x;R) | x ∈M}
topologized in an appropriate manner. There is a canonical projection MR → M which
turns this into a covering space. Since Hn(M |x;R) ∼= Hn(M |x)⊗R, each r ∈ R determines
a subcovering space

Mr = {±µx ⊗ r ∈ Hn(M |x;R) | x ∈M,µx is a generator of Hn(M |x)} ⊂MR.

The space

M̃ = {µx ∈ Hn(M |x) | µx is a generator of Hn(M |x)}
is also of great interest. For example MZ =

⊔
k≥0Mk where M0

∼= M and Mk
∼= M̃ for all

k ≥ 1. Similarly, if r ∈ R× has order 2, then Mr
∼= M , and otherwise Mr

∼= M̃ . Note that

M̃ is a two-sheeted cover of M (potentially not connected), and a (Z-)orientation of M is

nothing but a section M → M̃ of this cover.

Proposition 1.4.13. If M is connected, then M is orientable if and only if M̃ has two
components.

Corollary 1.4.14. If M is simply-connected, or more generally if π1(M) has no subgroup
of index two, then M is orientable.

An orientable manifold is R-orientable for all R, while a non-orientable manifold is R-
orientable if and only if R contains a unit of (additive) order 2, which is equivalent to having
2 = 0 in R. It follows that every manifold is Z/2-orientable. In practice, the important cases
are R = Z and R = Z/2.

Theorem 1.4.15. Let M be a closed connected n-manifold.

(a) If M is R-orientable, then the natural map Hn(M ;R)→ Hn(M |x;R) ∼= R is an isomor-
phism for all x ∈M .

(b) If M is not R-orientable, then the natural map Hn(M ;R)→ Hn(M |x;R) ∼= R is injective
with image {r ∈ R | 2r = 0} for all x ∈M .

(c) Hi(M ;R) = 0 for i > n.
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Corollary 1.4.16. Let M be an n-manifold. If M is orientable, then Hn(M) ∼= Z, and if
not, then Hn(M) = 0. In either case Hn(M ;Z/2) ∼= Z/2.

Definition 1.4.17. A fundamental (orientation) class for M with coefficients in R is an
element of Hn(M ;R) whose image in Hn(M |x;R) is a generator for all x ∈M .

Corollary 1.4.18. If M is a closed connected n-manifold, the torsion subgroup of Hn−1(M)
is trivial if M is orientable and Z/2 if M is non-orientable.

Proposition 1.4.19. If M is a connected non-compact n-manifold, then Hi(M ;R) = 0 for
i ≥ n.

For an arbitrary space X and a coefficient ring R, define an R-bilinear cap product

a : Ck(X;R)× C`(X;R)→ Ck−`(X;R)

for k ≥ ` by setting

σ a ϕ = ϕ(σ|[v0,...,v`])σ|[v`,...,vk].
The formula

∂(σ a ϕ) = (−1)`(∂σ a ϕ− σ a δϕ)

implies this induces a map on homology and cohomology

Hk(X;R)×H`(X;R)
a // Hk−`(X;R).

There are relative forms

Hk(X,A;R)×H`(X;R)
a // Hk−`(X,A;R)

Hk(X,A;R)×H`(X,A;R)
a // Hk−`(X;R),

and more generally

Hk(X,A ∪B;R)×H`(X,A;R)
a // Hk−`(X,B;R)

defined for open A,B ⊂ X. The naturality of the cap product is expressed via the following
diagram.

Hk(X)×H`(X)

f∗
��

a // Hk−`(X)

f∗
��

Hk(Y )×H`(Y )

f∗

OO

a // Hk−`(Y )

More precisely, we have

f∗(α) a ϕ = f∗(α a f ∗(ϕ)).

We are now ready to state our main result.

Theorem 1.4.20 (Poincaré Duality). Let M be a closed R-orientable n-manifold with fun-
damental class [M ] ∈ Hn(M ;R). Then the map D : Hk(M ;R) → Hn−k(M ;R) defined by
D(α) = [M ] a α is an isomorphism for all k.
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One can define cohomology with compact support, denoted H•c (X), as the cohomology of the
cochain complex which is formed by all compactly supported cochains (that is, vanishing on
chains outside a compact set). It is clear that H•(X) ∼= H•c (X) for all compact spaces X.

Proposition 1.4.21. If a space X is the union of a directed set of subspaces Xα with
the property that each compact set in X is contained in some Xα, then the natural map
lim−→Hi(Xα;G)→ Hi(X;G) is an isomorphism for all i and G.

For any space X, the compact sets K ⊂ X form a directed system since the union of any two
compact sets is compact. If K ⊂ L is an inclusion if compact sets, then there is a natural
map H•(X,X \ K;G) → H•(X,X \ L;G). It is possible to check that the resulting limit
lim−→H•(X,X \K;G) equals H•c (X;G). This could be a useful property, for example, one can
compute that H•c (Rn) ∼= Z(n). Poincaré Duality then generalizes in the following way.

Theorem 1.4.22. The duality map DM : Hk
c (M ;R) → Hn−k(M ;R) is an isomorphism for

all k whenever M is an R-oriented n-manifold.

Corollary 1.4.23. A closed manifold of odd dimension has Euler characteristic zero.

The cup and cap product are related by the formula

ψ(α a ϕ) = (ϕ ` ψ)(α)

for α ∈ Ck+`(X;R), ϕ ∈ Ck(X;R), and ψ ∈ C`(X;R). For a closed R-orientable n-manifold
M , consider the cup product pairing

Hk(M ;R)×Hn−k(M ;R)→ R, (ϕ, ψ) 7→ (ϕ a ψ)[M ].

Proposition 1.4.24. The cup product pairing is non-singular for closed R-orientable man-
ifolds when R is a field, or when R = Z and torsion in H•(X;R) is factored out.

Corollary 1.4.25. If M is a closed connected orientable n-manifold, then for each element
α ∈ Hk(M) of infinite (additive) order that is not a proper multiple of another element,
there exists an element β ∈ Hn−k(M) such that α ` β is a generator of Hn(M). With
coefficients in a field the same conclusion holds for any α 6= 0.

Let Hk
free(M) denote Hk(M) modulo torsion. If M is closed orientable manifold of dimension

2n, then the middle-dimensional cup product pairing Hn
free(M)×Hn

free(M)→ Z is a nonsin-
gular bilinear form on Hn

free(M). This form is symmetric when n is even, and skew-symmetric
when n is odd. In the latter case, it is always possible to chose a basis so the bilinear form is
given by a matrix formed by 2× 2 blocks

(
0 −1
1 0

)
along the diagonal and 0 everywhere else.

In particular, this implies that if n is odd, then the rank of Hn(M) is even. If n is even,
classifying symmetric bilinear forms is an interesting algebraic question. For any given n,
there are finitely many such but their number grows quickly with n.

Theorem 1.4.26 (J.H.C. Whitehead). The homotopy type of a simply-connected closed
4-manifold is uniquely determined by its cup product structure.

A compact manifold M with boundary is defined to be R-orientable if M \∂M is R-orientable
as a manifold without boundary. Orientability in the case of boundary implies there exists
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a fundamental class [M ] in Hn(M,∂M ;R) restricting to a given orientation at each point of
M \ ∂M . The following is a generalization of Poincaré duality.

Theorem 1.4.27. Suppose M is a compact R-orientable n-manifold whose boundary ∂M
is decomposed as the union of two compact (n − 1)-dimensional manifolds A and B with
common boundary ∂A = ∂B = A ∩ B. Then cap product with a fundamental class [M ] ∈
Hn(M,∂M ;R) gives isomorphisms DM : Hk(M,A;R)→ Hn−k(M,B;R) for all k.

The possibility that A, B, or A ∩ B is empty is not excluded. The cases A = ∅ and B = ∅
are sometimes called Lefschetz duality.

Theorem 1.4.28 (Alexander Duality). If K is a compact, locally contractible, non-empty,

proper subspace of Sn, then H̃i(S
n \K) ∼= H̃n−i−1(K) for all i.

Corollary 1.4.29. If X \Rn is compact and locally contractible then Hi(X) is 0 for i ≥ n
and torsion-free for i = n− 1 and n− 2.

Proposition 1.4.30. If K is a compact, locally contractible subspace of an orientable n-
manifold M , then there are isomorphisms Hi(M,M \K) ∼= Hn−i(K) for all i.

The condition of local contractibility can be removed if one uses Čech instead of singular
cohomology.

Definition 1.4.31. Let M and N be connected closed orientable n-manifolds with funda-
mental classes [M ] ∈ Hn(M) and [N ] ∈ Hn(N) respectively. The degree of a map f : M → N ,
denoted d = deg f , is such an integer that f∗[M ] = d[N ].

Proposition 1.4.32. For any closed orientable n-manifold M there is a degree 1 map M →
Sn.

Proposition 1.4.33. Let f : M → N be a map between connected closed orientable n-
manifolds. Suppose B ⊂ N is a ball such that f−1(B) is the disjoint union of balls Bi each
mapped homeomorphically by f onto B. Then the degree of f is

∑
i εi where εi is +1 or −1

according to whether f |Bi
: Bi → B preserves or reverses local orientations induced from the

given fundamental classes [M ] and [N ].

Proposition 1.4.34. A p-sheeted covering M → N of connected closed orientable manifolds
has degree ±p.

1.4.4. Universal Coefficients for Homology.

Theorem 1.4.35 (Universal Coefficients for Homology). For each pair of spaces (X,A) there
are split exact sequences

0 // Hn(X,A)⊗G // Hn(X,A;G) // Tor(Hn−1(X,A), G) // 0

for all n, and these sequences are natural with respect to maps (X,A)→ (Y,B).

The following result enables us to compute the Tor groups.

Proposition 1.4.36.

(a) Tor(A,B) ∼= Tor(B,A).
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(b) Tor(
⊕

iAi, B) ∼=
⊕

i Tor(Ai, B).
(c) Tor(A,B) = 0 if A or B is free, or more generally torsion-free.
(d) Tor(A,B) ∼= Tor(T (A), B) where T (A) is the torsion subgroup of A.

(e) Tor(Z/n,A) ∼= Ker(A
n·−→ A).

(f) For each short exact sequence 0→ B → C → D → 0 there is a natural associated exact
sequence

0 // Tor(A,B) // Tor(A,C) // Tor(A,D) // A⊗B // A⊗ C // A⊗D // 0.

Corollary 1.4.37.

(a) Hn(X;Q) ∼= Hn(X;Z) ⊗ Q, so when Hn(X;Z) is finitely generated, the dimension of
Hn(X;Q) as a Q-vector space equals the rank of of Hn(X;Z).

(b) If Hn(X;Z) and Hn−1(X;Z) are finitely generated, then for p prime, Hn(X;Z/p) consists
of

(i) a Z/p summand for each Z summand of Hn(X;Z),
(ii) a Z/p summand for each Z/pk summand in Hn(X;Z), k ≥ 1,
(iii) a Z/p summand for each Z/pk summand in Hn−1(X;Z), k ≥ 1.

Corollary 1.4.38.

(a) H̃•(X;Z) = 0 if and only if H̃•(X;Q) = 0 and H̃•(X;Z/p) = 0 for all primes p.
(b) A map f : X → Y induces isomorphisms on homology with Z coefficients if and only if

it induces isomorphisms on homology with Q and Z/p coefficients for all primes p.

1.4.5. The General Künneth Formula.

Theorem 1.4.39 (Künneth formula for PID). If X and Y are CW complexes and R is a
principal ideal domain, then there are split short exact sequences

0 //
⊕

iHi(X;R)⊗R Hn−i(Y ;R) // Hn(X × Y ;R) //
⊕

i TorR(Hi(X;R), Hn−i−1(Y ;R)) // 0

natural in X and Y .

Corollary 1.4.40. If F is a field and X and Y are CW complexes, then the cross product
map

h :
⊕
i

Hi(X;F )⊗F Hn−i(Y ;F )→ Hn(X × Y ;F )

is an isomorphism for all n.

There is a relative version of the Künneth formula which reads

0 //
⊕

iHi(X,A;R)⊗R Hn−i(Y,B;R) // Hn(X × Y,A× Y ∪X ×B;R) //

//
⊕

i TorR(Hi(X,A;R), Hn−i−1(Y,B;R)) // 0.

In the relative case, this reduces to

0 //
⊕

i H̃i(X;R)⊗R H̃n−i(Y ;R) // H̃n(X ∧ Y ;R) //
⊕

i TorR(H̃i(X;R), H̃n−i−1(Y ;R)) // 0,
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where X∧Y stands for the smash product of X and Y . It is possible to combine the Künneth
formula to the more concise form

Hn(X × Y ;R) ∼=
⊕
i

Hi(X;Hn−i(Y ;R)),

and similarly for relative and reduced homology. There is a version for cohomology which
reads

Hn(X × Y ;R) ∼=
⊕
i

H i(X;Hn−i(Y ;R)).

Both of these hold if we replace R with an arbitrary coefficient group G.


	Chapter 1. Notes
	1. Algebraic Topology
	1.1. Hatcher, Chapter 0: Some Underlying Geometric Notions
	1.2. Hatcher, Chapter 1: The Fundamental Group
	1.3. Hatcher, Chapter 2: Homology
	1.4. Hatcher, Chapter 3: Cohomology



