Lemma 27.5 (The Lebesgue number lemma)
If \(U \) is an open covering of the compact metric space \(X \), then \(\delta > 0 \) such that if \(A \subset X \) with \(\text{diam}(A) < \delta \), then \(\exists U \in U \) such that \(A \subset U \).

Thm 59.1: Suppose \(X = U \cup V \) where \(U, V \) are open and \(U \cap V \) is path connected. Let \(i_U : U \to X \) and \(i_V : V \to X \) be inclusion maps. Then \(\pi_1(X) \) is generated by the images of \(i_U^* \) and \(i_V^* \).

I.e., If \(g \in \pi_1(X) \), the \(g = g_1*g_2*...*g_n \) where for each \(i \), \(g_i \) is in either \(i_U^*(\pi_1(U)) \) or \(i_V^*(\pi_1(V)) \).

I.e., \(j : \pi_1(U) * \pi_1(V) \to \pi_1(X) \) induced by the two inclusion maps is surjective.

I.e, \(\pi_1(X) = \pi_1(U) * \pi_1(V) / \ker(j) \)

= \(< a_1, ..., a_i, b_1, ..., b_j | s_1, ..., s_l, t_1, ..., t_m > / \ker(j) >

Theorem 70.2. \(\ker(j) = \text{least normal subgroup} \)
generated by \(\{i_U(c_1)^{-1}i_V(c_1), ..., i_U(c_n)^{-1}i_V(c_n)\} \).

I.e., \(\pi_1(X) = < a_1, ..., a_i, b_1, ..., b_j | s_1, ..., s_l, t_1, ..., t_m, i_U(c_1)^{-1}i_V(c_1), ..., i_U(c_n)^{-1}i_V(c_n) > \)
The following maps are all induced by inclusion

\[\pi_1(U) \xrightarrow{\pi_1(U \cap V)} \pi_1(X) \xrightarrow{\pi_1(V)} \]

Thm 70.1: \(U, V, U \cap V \) open and path-connected.