NOTE: all maps are assumed to be continuous unless otherwise stated.

\[r : X \to A \text{ is a retraction of } X \text{ onto } A \]

if \(r|_A = \text{identity map on } A \).

\(A \) is a retract of \(X \) if \(\exists \) a retraction of \(X \) onto \(A \).

Ex: The constant map \(c : X \to x_0 \), where \(x_0 \) is a point of \(X \) is a retraction.

\(A \) is a deformation retract of \(X \) if the identity map \(i : X \to X \) is homotopic to a map \(R : X \to X \) where \(R \) is the extension (of the codomain) of a retraction \(r : X \to A \) and where each point of \(A \) remains fixed during the homotopy.

In other words, \(\exists \) homotopy \(H : X \times I \to X \) such that \(H_0 = \text{identity map on } X \), \(H_1(X) \subset A \), and \(H_t|_A = \text{identity map on } A \ \forall \ t \).

Ex: \(X \) is a deformation retract of \(X \times I \).

Ex: \(S^n \) is a deformation retract of \(R^{n+1} - \{0\} \).
Lemma 55.1: If A is a retract of X, then
\[i_* : \pi_1(A) \to \pi_1(X) \] is injective
where i_* is induced by the inclusion map.

Lemma 58.3: If A is a deformation retract of X, then
\[i_* : \pi_1(A) \to \pi_1(X) \] is an isomorphism
where i_* is induced by the inclusion map.

Thm 70.1: Seifert-van Kampen Theorem.

Suppose U, V and $U \cap V$ are open and path-connected. Let $i : U \cap V \to U$ and $j : U \cap V \to V$ be inclusion maps. If

\[\pi_1(U) = < a_1, ..., a_i \mid s_1, ..., s_l >, \]

\[\pi_1(V) = < b_1, ..., b_j \mid t_1, ..., t_m >, \]

\[\pi_1(U \cap V) = < c_1, ..., c_k \mid r_1, ..., r_n >, \]

then $\pi_1(U \cup V) =$
\[< a_1, ..., a_i, b_1, ..., b_j \mid s_1, ..., s_l, t_1, ..., t_m, \]
\[i(c_1) = j(c_1), ..., i(c_n) = j(c_n) > \]