## Degree

Let $f: S^{n} \rightarrow S^{n}$ for $n>0$.
Then $f_{*}: H_{n}\left(S^{n}\right)=\mathbb{Z} \rightarrow \mathbb{Z}=H_{n}\left(S^{n}\right)$.
$f_{*}$ is a homomorphism and thus $f_{*}(\alpha)=d \alpha$.
Defn: The degree of $f$ is $d$.
a.) $\operatorname{deg} i d=1$
b.) $f$ not onto implies $\operatorname{deg} f=0$

Suppose $x_{0} \in S^{n}-f\left(S^{n}\right)$. Then $S^{n} \rightarrow S^{n}-\left\{x_{0}\right\} \hookrightarrow S^{n}$ implies $f_{*}=0$ since $H_{n}\left(S^{n}-\left\{x_{0}\right\}=0\right.$
c.) If $f$ is homotopic to $g$, then $f *=g *$ and thus $\operatorname{deg} f=\operatorname{deg} g$.

Hopf Thm (cor 4.25): If $\operatorname{deg} f=\operatorname{deg} g$, then $f$ is homotopic to $g$.
d.) $(f \circ g)_{*}=f_{*} \circ g_{*}$, and thus deg $(f \circ g)=(\operatorname{deg} f)(\operatorname{deg} g)$
e.) Let $S^{n}=\left\{x \in R^{n+1} \mid\|x\|=1\right\}$. deg $r_{i}=-1$ where
$r_{i}\left(x_{1}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{n+1}\right)=\left(x_{1}, \ldots, x_{i-1},-x_{i}, x_{i+1}, \ldots, x_{n+1}\right)$.
$S^{n}=\Delta_{1}^{n} \bigcup_{\partial} \Delta_{2}^{n}, \quad H_{n}\left(S^{n}\right)=<\Delta_{1}^{n}-\Delta_{2}^{n}>$ and $f\left(\Delta_{1}^{n}-\Delta_{2}^{n}\right)=-\Delta_{1}^{n}+\Delta_{2}^{n}$
f.) The antipodal map $-i d: S^{n} \rightarrow S^{n},-i d(x)=-x$
has degree $(-1)^{n+1}$ since $r_{1} \circ r_{2} \circ \ldots \circ r_{n+1}=-i d$.
g.) If $f: S^{n} \rightarrow S^{n}$ has no fixed points, then $\operatorname{deg} f=(-1)^{n+1}$ since $f$ is homotopic to $-i d$ via the homotopy

$$
F(x, t)=\frac{(1-t) f(x)-t x}{\|(1-t) f(x)-t x\|}
$$

If $(1-t) f(x)-t x=0$, then $f(x)=\left(\frac{t}{1-t}\right) x$
$x, f(x) \in S^{n}$ implies $\frac{t}{1-t}=1,-1$.
But if $f(x)=-x$, then $(1-t) f(x)-t x=(1-t)(-x)-t x=-x$.
Thus $(1-t) f(x)-t x=0$ iff $f$ has a fixed point and thus $F$ is well-defined if $f$ has no fixed points.
h.) If $S f: S^{n+1} \rightarrow S^{n+1}, S([x, t])=S([f(x), t])$ denotes
the suspension map of $f: S^{n} \rightarrow S^{n}$, then $\operatorname{deg} S f=\operatorname{deg} f$.
The cone of of $S^{n}=C S^{n}=\left(S^{n} \times I\right) /\left(S^{n} \times 1\right)$
with base $S^{n}=S^{n} \times 0 \subset C S^{n}$.
$S^{n+1}=$ the suspension $S S^{n}=C S^{n} / S^{n}$
$H_{n+1}\left(C S^{n}\right) \rightarrow H_{n+1}\left(C S^{n}, S^{n}\right) \xrightarrow{\partial_{*}} H_{n}\left(S^{n}\right) \rightarrow H_{n}\left(C S^{n}\right)$
i.) $f: S^{1} \rightarrow S^{1}, f(z)=z^{k}$ has degree $k$.

Thus $S^{n-1} f: S^{n} \rightarrow S^{n}$ has degree $k$

Suppose $f: S^{n} \rightarrow S^{n}$ and $\exists y$ such that $f^{-1}(y)=\left\{x_{1}, \ldots, x_{m}\right\}$.
Choose $U_{l}, V$ open such that $x_{l} \in U_{l}, y \in V, f\left(U_{l}\right) \subset V$.
Then $f\left(U_{l}-x_{l}\right) \subset V-y$ and the following diagram commutes:

$$
\begin{aligned}
& H_{n}\left(U_{l}, U_{l}-x_{l}\right) \xrightarrow{f_{*}} H_{n}(V, V-y) \\
& i_{U_{l^{*}}},
\end{aligned}
$$

$$
\begin{array}{r}
H_{n}\left(S^{n}, S^{n}-x_{l}\right) \stackrel{i_{*}}{\longleftarrow} H_{n}\left(S^{n}, S^{n}-f^{-1}(y)\right) \xrightarrow{f_{*}} H_{n}\left(S^{n}, S^{n}-y\right) \\
\cong \\
H_{n}\left(S^{n}\right) \\
\xrightarrow{f_{*}} \quad H_{n}\left(S^{n}\right)
\end{array}
$$

$f_{*}: H_{n}\left(U_{l}, U_{l}-x_{l}\right)=\mathbb{Z} \rightarrow \mathbb{Z}=H_{n}(V, V-y), f_{*}(\alpha)=d_{l} \alpha$.
Defn: The local degree of $f$ at $x_{l}=\left.\operatorname{deg} f\right|_{x_{l}}=d_{l}$.
Prop: $\operatorname{deg} f=\left.\sum_{l=1}^{m} \operatorname{deg} f\right|_{x_{l}}$

$$
\begin{aligned}
H_{n}\left(S^{n}, S^{n}-f^{-1}(y)\right) \cong H_{n}\left(\sqcup U_{l}, \quad \sqcup\right. & \left.U_{l}-f^{-1}(y)\right) \\
& =\oplus H_{n}\left(U_{l}, U_{l}-x_{l}\right)=\oplus \mathbb{Z} .
\end{aligned}
$$

$\left(i_{*} \circ j\right)(1)=1$. Thus $j(1)=(1,1, \ldots, 1)=\sum i_{U_{l^{*}}}(1)$
$f_{*} \circ j(1)=(1,1, \ldots, 1)=\sum f_{*} \circ i_{U_{l} *}(1)=\sum d_{l}$

Note: If $f: U_{l} \rightarrow V$ is a homeomorphism, then $\left.\operatorname{deg} f\right|_{x_{l}}= \pm 1$

Theorem 2.28: A continuous nonvanishing vector field on $S^{n}$ exists if and only if $n$ is odd.

Proof: $(\Rightarrow)$ Suppose $\exists$ a continuous nonvanishing vector field, $v$, on $S^{n}$

Normalize the vector field so that $|v(x)|=1$ for all $x$.
Then $v(x) \in S^{n}$ and $v(x)$ is perpendicular to $x$.
Thus $(\cos (\pi t)) x+(\sin (\pi t)) v(x) \in S^{n}$.
Then $F(x, t)=(\cos (\pi t)) x+(\sin (\pi t)) v(x)$ is a homotopy between the identity map on $S^{n}$ and the antipodal map.

Thus $1=(-1)^{n+1}$ and $n$ is odd.
$(\Leftarrow)$ Let $v\left(x_{1}, x_{2}, \ldots, x_{2 l-1}, x_{2 l}\right)=\left(-x_{2}, x_{1}, \ldots,-x_{2 l}, x_{2 l-1}\right)$

Proposition 2.29: If $n$ is even, then $\mathbb{Z}_{2}$ is the only nontrivial group that can act freely on $S^{n}$.

Suppose $G$ acts on $S^{n}$. Then $g \in G$ defines a homeomorphism $g: S^{n} \rightarrow S^{n}$. Since $g$ is a homeomorphism, deg $g= \pm 1$.
$d: G \rightarrow\{ \pm 1\}, d(g)=\operatorname{deg} g$ is a homomorphism by property d.
If the action is free, then if $g \neq e, d(g)=(-1)^{n+1}$ by property $g$.
Thus if $n$ is even, $g \neq e$ implies $d(g)=-1$, Thus $\operatorname{ker}(d)=e$ and $d$ is an isomorphism. Thus $G \cong\{ \pm 1\} \cong \mathbb{Z}_{2}$

