Degree

Let $f: S^n \to S^n$ for n > 0.

Then $f_*: H_n(S^n) = \mathbb{Z} \to \mathbb{Z} = H_n(S^n).$

 f_* is a homomorphism and thus $f_*(\alpha) = d\alpha$.

Defn: The degree of f is d.

a.) $deg \ id = 1$

b.) f not onto implies deg f = 0

Suppose $x_0 \in S^n - f(S^n)$. Then $S^n \to S^n - \{x_0\} \hookrightarrow S^n$ implies $f_* = 0$ since $H_n(S^n - \{x_0\}) = 0$

c.) If f is homotopic to g, then f * = g * and thus $deg \ f = deg \ g$. Hopf Thm (cor 4.25): If $deg \ f = deg \ g$, then f is homotopic to g. d.) $(f \circ g)_* = f_* \circ g_*$, and thus $deg \ (f \circ g) = (deg \ f)(deg \ g)$ e.) Let $S^n = \{x \in \mathbb{R}^{n+1} \mid ||x|| = 1\}$. $deg \ r_i = -1$ where $r_i(x_1, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_{n+1}) = (x_1, \dots, x_{i-1}, -x_i, x_{i+1}, \dots, x_{n+1})$. $S^n = \Delta_1^n \bigcup_{\partial} \Delta_2^n, \quad H_n(S^n) = <\Delta_1^n - \Delta_2^n >$ and $f(\Delta_1^n - \Delta_2^n) = -\Delta_1^n + \Delta_2^n$ f.) The antipodal map $-id: S^n \to S^n, -id(x) = -x$ has degree $(-1)^{n+1}$ since $r_1 \circ r_2 \circ \ldots \circ r_{n+1} = -id$.

g.) If $f: S^n \to S^n$ has no fixed points, then $\deg f = (-1)^{n+1}$ since f is homotopic to -id via the homotopy

$$F(x,t) = \frac{(1-t)f(x) - tx}{||(1-t)f(x) - tx||}$$

If (1-t)f(x) - tx = 0, then $f(x) = (\frac{t}{1-t})x$ $x, f(x) \in S^n$ implies $\frac{t}{1-t} = 1, -1$. But if f(x) = -x, then (1-t)f(x) - tx = (1-t)(-x) - tx = -x. Thus (1-t)f(x) - tx = 0 iff f has a fixed point and thus F is well-defined if f has no fixed points.

h.) If
$$Sf : S^{n+1} \to S^{n+1}$$
, $S([x,t]) = S([f(x),t])$ denotes
the suspension map of $f : S^n \to S^n$, then deg $Sf = \deg f$.
The cone of of $S^n = CS^n = (S^n \times I)/(S^n \times 1)$
with base $S^n = S^n \times 0 \subset CS^n$.

$$\begin{split} S^{n+1} &= \text{the suspension } SS^n = CS^n / S^n \\ H_{n+1}(CS^n) &\to H_{n+1}(CS^n, S^n) \xrightarrow{\partial_*} H_n(S^n) \to H_n(CS^n) \\ \text{i.)} \ f : S^1 \to S^1, \ f(z) = z^k \text{ has degree } k. \\ & \text{Thus } S^{n-1}f : S^n \to S^n \text{ has degree } k \end{split}$$

Suppose $f: S^n \to S^n$ and $\exists y$ such that $f^{-1}(y) = \{x_1, ..., x_m\}$. Choose U_l , V open such that $x_l \in U_l$, $y \in V$, $f(U_l) \subset V$. Then $f(U_l - x_l) \subset V - y$ and the following diagram commutes:

$$\begin{array}{cccc} H_n(U_l, U_l - x_l) & \stackrel{f_*}{\longrightarrow} & H_n(V, V - y) \\ & & & i_{U_l*} \\ \end{array} & & & \cong \\ H_n(S^n, S^n - x_l) & \xleftarrow{i_*} & H_n(S^n, S^n - f^{-1}(y)) \stackrel{f_*}{\longrightarrow} & H_n(S^n, S^n - y) \\ & & & & i_l \\ & & & & & i_l \\ & & & & & & H_n(S^n) & \stackrel{f_*}{\longrightarrow} & H_n(S^n) \end{array}$$

$$f_* : H_n(U_l, U_l - x_l) = \mathbb{Z} \to \mathbb{Z} = H_n(V, V - y), \ f_*(\alpha) = d_l \alpha.$$

Defn: The *local degree* of f at $x_l = deg \ f|_{x_l} = d_l.$
Prop: $deg \ f = \sum_{l=1}^m deg \ f|_{x_l}$
 $H_n(S^n, \ S^n - f^{-1}(y)) \cong H_n(\sqcup U_l, \ \sqcup U_l - f^{-1}(y))$
 $= \oplus H_n(U_l, \ U_l - x_l) = \oplus \mathbb{Z}.$
 $(i_* \circ j)(1) = 1.$ Thus $j(1) = (1, 1, ..., 1) = \sum i_{U_l*}(1)$
 $f_* \circ j(1) = (1, 1, ..., 1) = \sum f_* \circ i_{U_l*}(1) = \sum d_l$

Note: If $f: U_l \to V$ is a homeomorphism, then $\deg f|_{x_l} = \pm 1$

Theorem 2.28: A continuous nonvanishing vector field on S^n exists if and only if n is odd.

Proof: (\Rightarrow) Suppose \exists a continuous nonvanishing vector field, v, on S^n

Normalize the vector field so that |v(x)| = 1 for all x.

Then $v(x) \in S^n$ and v(x) is perpendicular to x.

Thus $(\cos(\pi t))x + (\sin(\pi t))v(x) \in S^n$.

Then $F(x,t) = (cos(\pi t))x + (sin(\pi t))v(x)$ is a homotopy between the identity map on S^n and the antipodal map.

Thus $1 = (-1)^{n+1}$ and n is odd.

$$(\Leftarrow) \text{ Let } v(x_1, x_2, ..., x_{2l-1}, x_{2l}) = (-x_2, x_1, ..., -x_{2l}, x_{2l-1})$$

Proposition 2.29: If n is even, then \mathbb{Z}_2 is the only nontrivial group that can act freely on S^n .

Suppose G acts on S^n . Then $g \in G$ defines a homeomorphism $g: S^n \to S^n$. Since g is a homeomorphism, $\deg g = \pm 1$.

 $d: G \to \{\pm 1\}, d(g) = deg g$ is a homomorphism by property d.

If the action is free, then if $g \neq e$, $d(g) = (-1)^{n+1}$ by property g.

Thus if n is even, $g \neq e$ implies d(g) = -1, Thus ker(d) = e and d is an isomorphism. Thus $G \cong \{\pm 1\} \cong \mathbb{Z}_2$