
Degree

Let f : Sn → Sn for n > 0.

Then f∗ : Hn(Sn) = Z→ Z = Hn(Sn).

f∗ is a homomorphism and thus f∗(α) = dα.

Defn: The degree of f is d.

a.) deg id = 1

b.) f not onto implies deg f = 0

Suppose x0 ∈ Sn − f (Sn). Then Sn → Sn − {x0} ↪→ Sn implies
f∗ = 0 since Hn(Sn − {x0} = 0

c.) If f is homotopic to g, then f∗ = g∗ and thus deg f = deg g.

Hopf Thm (cor 4.25): If deg f = deg g, then f is homotopic to g.

d.) (f ◦ g)∗ = f∗ ◦ g∗, and thus deg (f ◦ g) = (deg f )(deg g)

e.) Let Sn = {x ∈ Rn+1 | ||x|| = 1}. deg ri = −1 where

ri(x1, ..., xi−1, xi, xi+1, ..., xn+1) = (x1, ..., xi−1,−xi, xi+1, ..., xn+1).
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f.) The antipodal map −id : Sn → Sn, −id(x) = −x
has degree (−1)n+1 since r1 ◦ r2 ◦ ... ◦ rn+1 = −id.

g.) If f : Sn → Sn has no fixed points, then deg f = (−1)n+1

since f is homotopic to −id via the homotopy

F (x, t) =
(1− t)f (x)− tx
||(1− t)f (x)− tx||

If (1− t)f (x)− tx = 0, then f (x) = ( t
1−t)x

x, f (x) ∈ Sn implies t
1−t = 1,−1.

But if f (x) = −x, then (1−t)f (x)−tx = (1−t)(−x)−tx = −x.

Thus (1 − t)f (x) − tx = 0 iff f has a fixed point and thus F is
well-defined if f has no fixed points.

h.) If Sf : Sn+1 → Sn+1, S([x, t]) = S([f (x), t]) denotes

the suspension map of f : Sn → Sn, then degSf = deg f .

The cone of of Sn = CSn = (Sn × I)/(Sn × 1)

with base Sn = Sn × 0 ⊂ CSn.

Sn+1 = the suspension SSn = CSn/Sn

Hn+1(CS
n)→ Hn+1(CS

n, Sn)
∂∗−→ Hn(Sn)→ Hn(CSn)

i.) f : S1 → S1, f (z) = zk has degree k.

Thus Sn−1f : Sn → Sn has degree k
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Suppose f : Sn → Sn and ∃y such that f−1(y) = {x1, ..., xm}.

Choose Ul, V open such that xl ∈ Ul, y ∈ V , f (Ul) ⊂ V .

Then f (Ul − xl) ⊂ V − y and the following diagram commutes:

Hn(Ul, Ul − xl)
f∗−−→ Hn(V, V − y)

�
�
�
�
�
�

+

iUl∗
?

∼=
?

Hn(Sn, Sn − xl)
i∗←−− Hn(Sn, Sn − f−1(y))

f∗−−→Hn(Sn, Sn − y)
Q
Q
Q
Q
Q
Q

k

j
6 ∼=

6

Hn(Sn)
f∗−−→ Hn(Sn)

f∗ : Hn(Ul, Ul − xl) = Z→ Z = Hn(V, V − y), f∗(α) = dlα.

Defn: The local degree of f at xl = deg f |xl = dl.

Prop: deg f =
m∑
l=1

deg f |xl

Hn(Sn, Sn − f−1(y)) ∼= Hn(tUl, t Ul − f−1(y))

= ⊕Hn(Ul, Ul − xl) = ⊕Z.

(i∗ ◦ j)(1) = 1. Thus j(1) = (1, 1, ..., 1) =
∑
iUl∗(1)

f∗ ◦ j(1) = (1, 1, ..., 1) =
∑
f∗ ◦ iUl∗(1) =

∑
dl

Note: If f : Ul → V is a homeomorphism, then deg f |xl = ±1
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Theorem 2.28: A continuous nonvanishing vector field on Sn exists
if and only if n is odd.

Proof: (⇒) Suppose ∃ a continuous nonvanishing vector field, v,
on Sn

Normalize the vector field so that |v(x)| = 1 for all x.

Then v(x) ∈ Sn and v(x) is perpendicular to x.

Thus (cos(πt))x + (sin(πt))v(x) ∈ Sn.

Then F (x, t) = (cos(πt))x+(sin(πt))v(x) is a homotopy between
the identity map on Sn and the antipodal map.

Thus 1 = (−1)n+1 and n is odd.

(⇐) Let v(x1, x2, ..., x2l−1, x2l) = (−x2, x1, ...,−x2l, x2l−1)

Proposition 2.29: If n is even, then Z2 is the only nontrivial group
that can act freely on Sn.

Suppose G acts on Sn. Then g ∈ G defines a homeomorphism
g : Sn → Sn. Since g is a homeomorphism, deg g = ±1.

d : G→ {±1}, d(g) = deg g is a homomorphism by property d.

If the action is free, then if g 6= e, d(g) = (−1)n+1 by property g.

Thus if n is even, g 6= e implies d(g) = −1 , Thus ker(d) = e and
d is an isomorphism. Thus G ∼= {±1} ∼= Z2
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