

Figure 1: https://en.wikipedia.org/wiki/Stereographic_projection

Thus $S^{1}=[\quad] \bigcup_{\partial}\left[\square\right.$ and $S^{2}=$

Figure 2: http://xahlee.info/math/i/stereographic_projection_by_Hen 12-12_95487.jpg

The following diagram does NOT commute:

The chain maps $f_{n}, g_{n}: C_{n} \rightarrow D_{n}$ are chain homotopic if $\exists K_{n}: C_{n} \rightarrow D_{n}$ such that

$$
\delta_{n+1} K_{n}+K_{n-1} \partial_{n}=f_{n}-g_{n}
$$

Claim: $f_{*}=g_{*}: H_{\bullet}^{C} \rightarrow H_{\bullet}^{D}$
Proof: If $\alpha \in Z_{n}^{C}$, then $\partial \alpha=0$.
$\delta_{n+1} K_{n}(\alpha)+K_{n-1} \partial_{n}(\alpha)=f_{n}(\alpha)-g_{n}(\alpha)$
$f_{n}(\alpha)=\delta_{n+1} K_{n}(\alpha)+g_{n}(\alpha)$
$\left[f_{n}(\alpha)\right]=\left[\delta_{n+1} K_{n}(\alpha)+g_{n}(\alpha)\right]=\left[g_{n}(\alpha)\right]$
Thus $f_{*}(\alpha)=g_{*}(\alpha)$

