Let $\mathcal{U}=\left\{\mathcal{U}_{\alpha}\right\}$ such that $X \subset \cup U_{\alpha}^{o}$.
Then $C_{n}^{\mathcal{U}}(X)=\left\{\sum r_{i} \sigma_{i} \mid \sigma_{i} \subset U_{\alpha}\right.$ for some $\left.\alpha\right\}$ is a subgroup of $C_{n}(X)$.
$\partial\left(C_{n}^{\mathcal{U}}(X)\right) \subset C_{n-1}^{\mathcal{U}}(X)$ and $\partial^{2}=0$. Thus $\exists H_{n}^{\mathcal{U}}(X)$
Prop 2.2.1: The inclusion map $i: C_{n}^{\mathcal{U}}(X) \rightarrow C_{n}(X)$ is a chain homotopy equivalence.
I.e., $\exists \rho: C_{n}(X) \rightarrow C_{n}^{\mathcal{U}}(X)$ wuthe that $i \rho$ and ρi are chain homotopic to the identity.

Hence i induces an isomorphism $H_{n}^{\mathcal{U}}(X) \cong H_{n}(X)$.
(1) Barycentric subdivision of of (ideal) simplices.

Simplex $\left[v_{0}, \ldots, v_{n}\right]=\left\{\sum t_{i} v_{i} \mid \sum t_{i}=1, t_{i} \geq 0\right\}$

Figure 1: http://www.wikiwand.com/en/Simplex
The barycenter $=$ center of gravity $=b=\sum_{i=0}^{n} \frac{1}{n+1} v_{i}$
Barycentric subdivision: decompose $\left[v_{0}, \ldots, v_{n}\right]$ into the n-simplices $\left[b, w_{0}, \ldots, w_{n-1}\right]$, inductively.

Divide each edge $\left[v_{1}, v_{2}\right]$ in half, forming 2 new edges $\left[b, v_{1}\right],\left[b, v_{2}\right]$.
Note: $\operatorname{diam}\left[b, v_{i}\right]=\left\|v_{i}-b\right\|=\frac{1}{2}\left\|v_{2}-v_{1}\right\|=\frac{1}{2}\left(\operatorname{diam}\left[v_{1}, v_{2}\right]\right)$

http://drorbn.net/AcademicPensieve/2010-06/

Claim:
If b is a barycenter of $\left[v_{0}, \ldots, v_{k-1}\right]$, then $\left\|b-v_{i}\right\| \leq\left(\frac{k-1}{k}\right)\left\|v_{j}-v_{k}\right\|$.
Thus diam $\left[b, w_{0}, \ldots, w_{k-1}\right] \leq\left(\frac{k-1}{k}\right) \operatorname{diam}\left[v_{0}, \ldots, v_{n}\right]$
Note: Claim is true for $k=2$. Suppose claim is true for $k=n-1$.
Suppose all the faces of $\left[v_{0}, \ldots, v_{n}\right]$ have been subdivided. For all $n-1$-simplices $\left[w_{0}, \ldots, w_{n-1}\right]$ in this subdivision, form the $n-$ simplices $\left[b, w_{0}, \ldots, w_{n-1}\right]$, where b is the barycenter of $\left[v_{0}, \ldots, v_{n}\right]$

By induction $\left\|w_{i}-w_{j}\right\| \leq\left(\frac{n-1}{n}\right)\left\|v_{l}-v_{k}\right\|$.
Let b_{i} be the barycenter of $\left[v_{0}, \ldots, \widehat{v}_{i}, \ldots, v_{n}\right]$
$b=\sum_{j=0}^{n} \frac{1}{n+1} v_{j}=\left(\frac{1}{n+1}\right) v_{i}+\sum_{j \neq i}\left(\frac{1}{n+1}\right) v_{j}=\left(\frac{1}{n+1}\right) v_{i}+\left(\frac{n}{n+1}\right) \sum_{j \neq i}\left(\frac{1}{n}\right) v_{j}$
$=\left(\frac{1}{n+1}\right) v_{i}+\left(\frac{n}{n+1}\right) b_{i}$
Thus $\left\|b-v_{i}\right\|=\left(\frac{n}{n+1}\right)\left\|b_{i}-v_{i}\right\| \leq\left(\frac{n}{n+1}\right)\left\|v_{j}-v_{i}\right\|$
Thus $\operatorname{diam}\left[b, w_{0}, \ldots, w_{n-1}\right] \leq\left(\frac{n}{n+1}\right) \operatorname{diam}\left[v_{0}, \ldots, v_{n}\right]$
Thus repeated barycentric subdivision leads to simplices whose diameter is arbitrarily small.

2. Barycentric subdivision of Linear Chains

For Y convex, define $L C_{n}(Y)=\left\{\lambda: \Delta^{n} \rightarrow Y \mid \lambda\right.$ is linear $\}$
$\partial\left(L C_{n}(Y)\right) \subset L C_{n-1}(Y)$.
For convenience, define $L C_{-1}(Y)=\mathbb{Z}=<[\emptyset]>$ where $\partial[v]=[\emptyset]$
If $b \in Y$, define homomorphism $b: L C_{n}(Y) \rightarrow L C_{n+1}(Y)$, $b\left(\left[w_{0}, \ldots, w_{n}\right]\right)=\left[b, w_{0}, \ldots, w_{n}\right]$, the cone operator.
$\partial b\left(\left[w_{0}, \ldots, w_{n}\right]\right)=\partial\left[b, w_{0}, \ldots, w_{n}\right]=\left[w_{0}, \ldots, w_{n}\right]-b \partial\left[w_{0}, \ldots, w_{n}\right]$.
Thus if $\alpha=\sum_{i=1}^{n} r_{i} \lambda_{i}$, then $(\partial \circ b)(\alpha)=\alpha-(b \circ \partial)(\alpha), \forall \alpha \in L C_{n}(Y)$.
$(\partial \circ b)(\alpha)+(b \circ \partial)(\alpha)=\alpha$
That is $\partial \circ b+b \circ \partial=i d-0$, where id $=$ the identity homomorphism and $0=$ the constant zero homomorphism on $L C_{n}(Y)$.

Thus b is a chain homotopy between the identity map and the zero homomorphism on the augmented chain complex $L C(Y)$.

Define subdivision homomorphism $S: L C_{n}(Y) \rightarrow L C_{n}(Y)$ by induction on n.

Let $\lambda: \Delta^{n} \rightarrow Y$ be a generator of $L C_{n}(Y)$.
Let $b_{\lambda}=\lambda(b)$ where b is the barycenter of Δ^{n}.

Define $S([\emptyset])=[\emptyset]$ and $S(\lambda)=b_{\lambda}(S(\partial(\lambda)))$
Ex: If $\lambda=[v]$, then $b_{\lambda}=v$ and

$$
S([v])=b_{\lambda}(S(\partial([v])))=v(S([\emptyset]))=v([\emptyset])=[v] .
$$

Thus S is the identity on $L C_{-1}(Y)$ and $L C_{0}(Y)$.
Ex: If $\lambda=[v, w], S([v, w])=b_{\lambda}(S(\partial([v, w])))$

$$
=b_{\lambda}(S([w])-S([v]))=b_{\lambda}([w]-[v])=\left[b_{\lambda}, w\right]-\left[b_{\lambda}, v\right] .
$$

Ex: If $\lambda=[u, v, w], S(u,[v, w])=b_{\lambda}(S(\partial([u, v, w])))$
$=b_{\lambda}(S([v, w])-S([u, w])+S([u, v]))$
$=b_{\lambda}\left(\left[b_{v, w}, w\right]-\left[b_{v, w}, v\right]-\left(\left[b_{u, w}, w\right]-\left[b_{u, w}, u\right]\right)+\left[b_{u, v}, v\right]-\left[b_{u, v}, u\right]\right)$
$=\left[b_{\lambda}, b_{v, w}, w\right]-\left[b_{\lambda}, b_{v, w}, v\right]-\left[b_{\lambda}, b_{u, w}, w\right]+\left[b_{\lambda}, b_{u, w}, u\right]+\left[b_{\lambda}, b_{u, v}, v\right]-$ $\left[b_{\lambda}, b_{u, v}, u\right.$]

If λ is an embedding, $S(\lambda)$ is the alternating sum of the simplices in the barycentric subdivision of λ.

Claim: S is a chain homotopy between $L C_{n}(Y)$ and itself.
That is $\partial S=S \partial$.
Proof by induction on n :
True for $n=-1,0$ since $S=i d$.
$\left.\partial(S(\lambda))=\partial\left(b_{\lambda}(S(\partial(\lambda)))\right)=\left(1-b_{\lambda} \partial\right)(S(\partial(\lambda)))\right)$

$$
\begin{aligned}
& =S(\partial(\lambda))-b_{\lambda}(\partial(S(\partial(\lambda))))=S(\partial(\lambda))-b_{\lambda}(S(\partial(\partial(\lambda)))) \\
& =S(\partial(\lambda))-b_{\lambda}(S(0)=S(\partial(\lambda))
\end{aligned}
$$

Define a chain homotopy between S and $i d$,

$$
T: L C_{n}(Y) \rightarrow L C_{n+1}(Y) \text { inductively: }
$$

$$
T=0 \text { for } n=-1, \text { and } T(\lambda)=b_{\lambda}(\lambda T \partial \lambda) .
$$

