PROP. Let 
$$H_0 = p_*(\pi_1(\widetilde{X}, \widetilde{x_0}))$$
  
 $\varphi : \pi_1(X, x_0) \to p^{-1}(x_0), \quad \varphi(\alpha) = \widetilde{\alpha}(1) \text{ induces}$ 

$$\Phi : \pi_1(X, x_0)/H_0 \to p^{-1}(x_0), \qquad \overbrace{h\alpha}^{h\alpha} \qquad p \downarrow$$

$$\Phi(H_0[\alpha]) = \widetilde{h\alpha}(1) = \widetilde{\alpha}(1) \qquad I \xrightarrow{h\alpha} (X, x_0)$$

If  $\widetilde{X}$  path connected, then  $\Phi$  is bijective.



DEFINITION 0.1.

 $\mathcal{C}(\widetilde{X}, p, X) = \{h : \widetilde{X} \to \widetilde{X} \mid h \text{ is a covering transformation for } p\}$  $= \{h : \widetilde{X} \to \widetilde{X} \mid h \text{ is a homeomorphism and } p = h \circ p\}$ 

Examples:  $\mathcal{C}(\mathbb{R}, p = e^{2\pi i \theta}, S^1) = \{h_j : \mathbb{R} \to \mathbb{R}, h_j(x) = x + j \mid j \in \mathbb{Z}\} \simeq \mathbb{Z}$   $\mathcal{C}(S^1, p = z^k, S^1) = \{h_j : S^1 \to S^1, h_j(e^x) = e^{x + 2\pi i \frac{j}{k}} \mid j \in \{0, 1, ..., k - 1\}\} \simeq \mathbb{Z}_k$ 

Note:  $\mathcal{C}(\widetilde{X}, p, X)$  is a group under composition:



DEFINITION 0.2. Suppose H < G. The normalizer of H in Gis  $N(H) = \{g \in G \mid gHg^{-1} = H\}$ 

Note: N(H) < G and  $H \triangleleft N(H)$  N(H) is the largest subgp of G containing H as a normal subgp. Example 0.3.  $N(\{e\}) = G$ Example 0.4. N(H) = G if G is abelian.

Claim: Let  $H_0 = p_*(\pi_1(\widetilde{X}, \widetilde{x_0}))$ . Then  $\mathcal{C}(\widetilde{X}, p, X) \simeq N(H_0)/H_0$ . Examples:



Recall,  $\Phi: \pi_1(X, x_0)/H_0 \to p^{-1}(x_0), \quad \Phi(H[\alpha]) = \widetilde{\alpha}(1)$ Define:  $\Psi : \mathcal{C}(\widetilde{X}, p, X) \to p^{-1}(x_0), \quad \Psi(h) = h(\widetilde{x_0})$ Claim:  $\Psi(\mathcal{C}(\widetilde{X}, p, X)) = \Phi(N(H_0)/H_0)$  $\Psi(\mathcal{C}(\widetilde{X}, p, X)) = \{h(\widetilde{x_0}) \mid h \in \mathcal{C}(\widetilde{X}, p, X)\}$  $= \{ h(\tilde{x}_{0}) \mid p_{*}(\pi_{1}(\tilde{X}, h(\tilde{x}))) = H_{0} \}$  $\widetilde{X}$  path connected implies  $\exists \widetilde{\alpha}, a \text{ path in } \widetilde{X} \text{ from } \widetilde{x_0} \text{ to } h(\widetilde{x})$  $[\alpha] \in \pi_1(X, x_0)/H_0$  and  $\widetilde{\alpha}(1) = h(\widetilde{x_0})$ . I.e.,  $\alpha$  is a loop in X and  $\widetilde{\alpha}$  is a path in  $\widetilde{X}$  from  $\widetilde{x}_0$  to  $\widetilde{\alpha}(1)$ Thus by Lemma 79.3a,  $\alpha p_*(\pi_1(\widetilde{X}, h(\widetilde{x}))) \alpha^{-1} = H_0.$ But  $h \in \mathcal{C}(\widetilde{X}, p, X)$  iff  $p_*(\pi_1(\widetilde{X}, h(\widetilde{x}))) = H_0$  $H_0 = \alpha \ p_*(\pi_1(\widetilde{X}, h(\widetilde{x}))) \ \alpha^{-1} = \alpha H_0 \alpha^{-1} \text{ iff } \alpha \in N(H_0).$ 

Thus  $\Psi(\mathcal{C}(X, p, X)) = \Phi(N(H_0)/H_0)$ 

THM (81.2). The bijection  $\Phi^{-1} \circ \Psi : \mathcal{C}(\widetilde{X}, p, X)) \to N(H_0)/H_0$  is an isomorphism of groups.

COR (81.3).  $H_0 \triangleleft \pi_1(X, x_0)$  iff  $\forall \widetilde{x} \in p^{-1}(x_0), \exists$  covering transformation h such that  $h(\widetilde{x_0}) = \widetilde{x}$ .

Note that in this case  $N(H_0)/H_0 = \pi_1(X, x_0)/H_0$ 

COR (81.4).  $\widetilde{X}$  simply connected implies  $\mathcal{C}(\widetilde{X}, p, X) \simeq \pi_1(X, x_0)$ 

The covering map  $p: \widetilde{X} \to X$  is **regular** if  $H_0 \triangleleft \pi_1(X, x_0)$ 

I.e., the covering map is regular if  $N(H_0) = \pi_1(X, x_0)$ 

A (left) **group action** A of a group G on a set X is a function  $A: G \times X \to X, A(g, x) = g(x)$  that satisfies the following two axioms:

Identity:  $e(x) = x \quad \forall x \in X.$ 

Compatibility:  $(gh)x = g(h(x)) \quad \forall g, h \in G \text{ and } \forall x \in X.$ 

The **orbit** of a point  $x \in X = G(x) = \{g(x) \mid g \in G\}.$ 

The orbit space  $X/G = X/ \sim$  where  $x \sim y$  iff  $y \in G(x)$ .

If G acts on a topological space X, the action is **properly** discontinuous if  $\forall x \in X \exists$  an open neighborhood U of x in X, such that  $g(U) \cap U \neq \emptyset$  implies g = e.

THM (81.5). Let  $\widetilde{X}$  be pc and lpc and let G be a group of homomorphisms of  $\widetilde{X}$ . The quotient map  $\pi : \widetilde{X} \to \widetilde{X}/G$  is a covering map iff the action of G is properly discontinuous. In this case  $\pi$  is regular and  $\mathcal{C}(\widetilde{X}, \pi, \widetilde{X}/G) \simeq G$ 

THM (81.5). If  $p : \widetilde{X} \to X$  is a regular covering map and  $G = \mathcal{C}(\widetilde{X}, p, X)$  then  $\exists$  homeomorphism  $k : X/G \to X$  such that  $p = k \circ \pi$ 

$$\widetilde{X} = \widetilde{X} \\
 \pi \Big| \qquad p \Big| \\
\widetilde{X}/G \xrightarrow{k} X$$