If $H < G = \pi_1(X, x_0), \exists p \colon \widetilde{X} \to X$ such that $p_*(\pi_1(\widetilde{X}, \widetilde{x_0})) = H$ Step 1: Define \widetilde{X} by

1.) $P = \{ [\alpha] \mid \alpha \text{ a path in } X \text{ starting at } x_0 \}.$ 2.) $\widetilde{X} = P/\sim$ where $\alpha \sim \beta$ iff $\alpha \beta^{-1} \in H.$ Let $\alpha^{\#}$ denote the equivalence class of $\alpha \in P.$ Note: If $[\alpha] = [\beta]$, then $\alpha^{\#} = \beta^{\#}$ since $\alpha \beta^{-1} = e \in H.$ Note: If $\alpha^{\#} = \beta^{\#}$, then $(\alpha \delta)^{\#} = (\beta \delta)^{\#}$ when the product is defined since $(\alpha \delta)(\beta \delta)^{-1} = \alpha \delta \delta^{-1} \beta^{-1} = \alpha \beta^{-1} \in H.$ Define $p: \widetilde{X} \to X, \ p(\alpha^{\#}) = \alpha(1).$

Note p is onto since X is path connected.

Step 2: Topologize E

Method 1: Give P the compact-open topology

$$S(C, U) = \{ \alpha \mid \alpha : [0, 1] \to X \text{ such that } \alpha(C) \subset U \}$$

 $S = \{S(C, U) \mid C \text{ compact in } [0, 1], U \text{ open in } X\}$ is subbases for compact-open topology on the set of paths P.

Give $\widetilde{X} = P / \sim$ the quotient topology.

Or equivalently,

Method 2: Let $\alpha \in P$, U path connected open nbhd of $\alpha(1)$.

 $B(U,\alpha) = \{ (\alpha * \delta)^{\#} \mid \delta \text{ path in } U \text{ such that } \delta(0) = \alpha(1) \}$

Claim: $\{B(U, \alpha) \mid \alpha \in P, U \text{ path connected nbhd of } \alpha(1)\}$ is a basis for a topology on \widetilde{X} .

1.)
$$\alpha^{\#} = (\alpha * e_{\alpha(1)})^{\#} \in B(U, \alpha)$$

2.) Suppose $\beta^{\#} \in B(U_1, \alpha_1) \cap B(U_2, \alpha_2)$.

 $\beta^{\#} \in B(V,\beta) \subset B(U_1,\alpha_1) \cap B(U_2,\alpha_2)$ where V is path connected component of $U_1 \cap U_2$ containing $\beta(1)$.

Thus $B(U, \alpha) \cap B(U, \beta) \neq \emptyset$ implies $B(U, \alpha) = B(U, \beta)$.

Step 3. p is open and continuous.

Note $p(B(U, \alpha)) = U$ since $p((\alpha \delta)^{\#}) = \delta(1)$ and U is path connected. Thus p is open.

Claim p continuous. Let W be open in X. Let $\alpha^{\#} \in p^{-1}(W)$. Let U be a path connected component of W such that $\alpha(1) \in U$. Note U is open. Then $\alpha^{\#} \in B(U, \alpha) \subset p^{-1}(W)$.

Step 4. Claim: $\forall z \in X$, $\exists U$ open in X such that U is evenly covered by p.

Let $z \in X$. Take U path connected nbhd of z such that $i_*: \pi_1(U, z) \to \pi_1(X, z)$ is trivial.

Note U exists since X is path connected, locally path connected, and semilocally simply connected.

Claim:
$$p^{-1}(U) = \bigcup_{\alpha \text{ path from } x_0 \text{ to } z} B(U, \alpha)$$

 (\supset) : Clear since $p(B(U, \alpha)) = U$.

(\subset): If $\beta^{\#} \in p^{-1}(U)$, then $\beta(1) \in U$. Let δ be a path in U from z to $\beta(1)$. Let $\alpha = \beta \delta^{-1}$ is a path from x_0 to z. Thus $\beta^{\#} = (\alpha \delta)^{\#} \in B(U, \alpha)$.

Claim: $p|_{B(U,\alpha)} : B(U,\alpha) \to U$ is a bijection.

Onto: Recall $p(B(U, \alpha)) = U$.

1:1: Suppose
$$p((\alpha \delta_1)^{\#}) = p((\alpha \delta_2)^{\#})$$
 where $\delta_1, \delta_2 \subset U$.
Then $\delta_1(1) = \delta_2(1)$.

Recall
$$i_*: \pi_1(U, z) \to \pi_1(X, z)$$
 is trivial.

Thus $\delta_1 \delta_2^{-1} = e$ in $\pi_1(X, z)$.

Thus
$$[\alpha \delta_1] = [\alpha \delta_2]$$
 and $(\alpha \delta_1)^{\#} = (\alpha \delta_2)^{\#}$.

Step 5, 6. \widetilde{X} is path connected.

Let $\tilde{x} = e_{x_0}$, the constant path at x_0 . Then $p(\tilde{x}) = e_{x_0}(1) = x_0$. Let $\alpha^{\#} \in \widetilde{X}$. Let $c \in [0, 1]$. Define $\alpha_c : I \to X$, $\alpha_c(t) = \alpha(tc)$. Thus α_c is a path from x_0 to $\alpha(c)$. z Define $\widetilde{\alpha} : I \to \widetilde{X}$ by $\widetilde{\alpha}(c) = (\alpha_c)^{\#}$. α $p(\widetilde{\alpha}(c)) = p((\alpha_c)^{\#}) = \alpha_c(1) = \alpha(c).$ $\alpha(c)$ Hence $p \circ \widetilde{\alpha} = \alpha$.

Thus $\widetilde{\alpha}$ is the lift of α starting at x_0

if $\widetilde{\alpha}$ is continuous.

Claim: $\widetilde{\alpha} : I \to \widetilde{X}$ is continuous. Let $c \in I$. $B(U, \alpha_c)$ is an arbitrary basis element containing $\widetilde{\alpha}(c) = \alpha_c^{\#}$. $\alpha : I \to X$ is continuous. Thus $\exists \varepsilon > 0$ such that if $t \in (c - \varepsilon, c + \varepsilon)$, then $\alpha(t) \in U$. Then $\alpha_t^{\#} = (\alpha_c \delta)^{\#} \in B(U, \alpha_c)$

 α_{c}

X₀

Step 7. Claim $p_*(\pi_1(\widetilde{X}, \widetilde{x})) = H$. $[\alpha] \in p_*(\pi_1(\widetilde{X}, \widetilde{x})) \text{ iff } \widetilde{\alpha} \in \pi_1(\widetilde{X}, \widetilde{x})$ iff $\widetilde{\alpha}$ is a loop in \widetilde{X} based at \widetilde{x} iff $\alpha^{\#} = \widetilde{\alpha}(1) = \widetilde{x}$ iff $[\alpha] = [\alpha * e_{x_0}^{-1}] \in H$. Thus $p_*(\pi_1(\widetilde{X}, \widetilde{x})) = H$