If $H<G=\pi_{1}\left(X, x_{0}\right), \exists p: \widetilde{X} \rightarrow X$ such that $p_{*}\left(\pi_{1}\left(\widetilde{X}, \widetilde{x_{0}}\right)\right)=H$
Step 1: Define \widetilde{X} by
1.) $P=\left\{[\alpha] \mid \alpha\right.$ a path in X starting at $\left.x_{0}\right\}$.
2.) $\tilde{X}=P / \sim$ where $\alpha \sim \beta$ iff $\alpha \beta^{-1} \in H$.

Let $\alpha^{\#}$ denote the equivalence class of $\alpha \in P$.
Note: If $[\alpha]=[\beta]$, then $\alpha^{\#}=\beta^{\#}$ since $\alpha \beta^{-1}=e \in H$.
Note: If $\alpha^{\#}=\beta^{\#}$, then $(\alpha \delta)^{\#}=(\beta \delta)^{\#}$ when the product is defined since $(\alpha \delta)(\beta \delta)^{-1}=\alpha \delta \delta^{-1} \beta^{-1}=\alpha \beta^{-1} \in H$.

Define $p: \widetilde{X} \rightarrow X, p\left(\alpha^{\#}\right)=\alpha(1)$.
Note p is onto since X is path connected.

Step 2: Topologize E

Method 1: Give P the compact-open topology
$S(C, U)=\{\alpha \mid \alpha:[0,1] \rightarrow X$ such that $\alpha(C) \subset U\}$
$\mathcal{S}=\{S(C, U) \mid C$ compact in $[0,1], U$ open in $X\}$ is subbases for compact-open topology on the set of paths P.

Give $\widetilde{X}=P / \sim$ the quotient topology.
Or equivalently,

Method 2: Let $\alpha \in P, \quad U$ path connected open nbhd of $\alpha(1)$.

$$
B(U, \alpha)=\left\{(\alpha * \delta)^{\#} \mid \delta \text { path in } U \text { such that } \delta(0)=\alpha(1)\right\}
$$

Claim: $\{B(U, \alpha) \mid \alpha \in P, U$ path connected nbhd of $\alpha(1)\}$ is a basis for a topology on \widetilde{X}.
1.) $\alpha^{\#}=\left(\alpha * e_{\alpha(1))}\right)^{\#} \in B(U, \alpha)$
2.) Suppose $\beta^{\#} \in B\left(U_{1}, \alpha_{1}\right) \cap B\left(U_{2}, \alpha_{2}\right)$.
$\beta^{\#} \in B(V, \beta) \subset B\left(U_{1}, \alpha_{1}\right) \cap B\left(U_{2}, \alpha_{2}\right)$ where V is path connected component of $U_{1} \cap U_{2}$ containing $\beta(1)$.

$\beta^{\#}=\left(\alpha_{1} \delta_{1}\right)^{\#}=\left(\alpha_{2} \delta_{2}\right)^{\#}$ implies $(\beta \delta)^{\#}=\left(\alpha_{1} \delta_{1} \delta\right)^{\#}=\left(\alpha_{2} \delta_{2} \delta\right)^{\#}$
Claim: $\beta^{\#} \in B(U, \alpha)$ implies $B(U, \alpha)=B(U, \beta)$.
$\beta^{\#} \in B(U, \alpha)$ implies $\beta^{\#}=(\alpha \delta)^{\#}$ implies $\alpha^{\#}=\left(\beta \delta^{-1}\right)^{\#}$. Thus $\alpha^{\#} \in B(U, \beta)$.
$\left(\beta \delta^{\prime}\right)^{\#}=\left(\alpha \delta \delta^{\prime}\right)^{\#} \in B(U, \alpha)$. Thus $B(U, \beta) \subset B(U, \alpha)$. Similarly, $B(U, \alpha) \subset B(U, \beta)$.

Thus $B(U, \alpha) \cap B(U, \beta) \neq \emptyset$ implies $B(U, \alpha)=B(U, \beta)$.
Step 3. p is open and continuous.
Note $p(B(U, \alpha))=U$ since $p\left((\alpha \delta)^{\#}\right)=\delta(1)$ and U is path connected. Thus p is open.

Claim p continuous. Let W be open in X. Let $\alpha^{\#} \in p^{-1}(W)$. Let U be a path connected component of W such that $\alpha(1) \in U$. Note U is open. Then $\alpha^{\#} \in B(U, \alpha) \subset p^{-1}(W)$.

Step 4. Claim: $\forall z \in X, \exists U$ open in X such that U is evenly covered by p.

Let $z \in X$. Take U path connected nbhd of z such that $i_{*}: \pi_{1}(U, z) \rightarrow \pi_{1}(X, z)$ is trivial.

Note U exists since X is path connected, locally path connected, and semilocally simply connected.

Claim: $p^{-1}(U)=\quad U \quad B(U, \alpha)$ α path from x_{0} to z
(\supset) : Clear since $p(B(U, \alpha))=U$.
(C): If $\beta^{\#} \in p^{-1}(U)$, then $\beta(1) \in U$. Let δ be a path in U from z to $\beta(1)$. Let $\alpha=\beta \delta^{-1}$ is a path from x_{0} to z. Thus $\beta^{\#}=(\alpha \delta)^{\#} \in B(U, \alpha)$.

Claim: $\left.p\right|_{B(U, \alpha)}: B(U, \alpha) \rightarrow U$ is a bijection.
Onto: Recall $p(B(U, \alpha))=U$.
1:1: Suppose $p\left(\left(\alpha \delta_{1}\right)^{\#}\right)=p\left(\left(\alpha \delta_{2}\right)^{\#}\right)$ where $\delta_{1}, \delta_{2} \subset U$.
Then $\delta_{1}(1)=\delta_{2}(1)$.
Recall $i_{*}: \pi_{1}(U, z) \rightarrow \pi_{1}(X, z)$ is trivial.
Thus $\delta_{1} \delta_{2}^{-1}=e$ in $\pi_{1}(X, z)$.
Thus $\left[\alpha \delta_{1}\right]=\left[\alpha \delta_{2}\right]$ and $\left(\alpha \delta_{1}\right)^{\#}=\left(\alpha \delta_{2}\right)^{\#}$.
Step 5, 6. \widetilde{X} is path connected.
Let $\widetilde{x}=e_{x_{0}}$, the constant path at x_{0}. Then $p(\widetilde{x})=e_{x_{0}}(1)=x_{0}$.
Let $\alpha^{\#} \in \widetilde{X}$.
Let $c \in[0,1]$. Define $\alpha_{c}: I \rightarrow X, \alpha_{c}(t)=\alpha(t c)$.
Thus α_{c} is a path from x_{0} to $\alpha(c)$.
Define $\widetilde{\alpha}: I \rightarrow \widetilde{X}$ by $\widetilde{\alpha}(c)=\left(\alpha_{c}\right)^{\#}$.
$p(\widetilde{\alpha}(c))=p\left(\left(\alpha_{c}\right)^{\#}\right)=\alpha_{c}(1)=\alpha(c)$.
Hence $p \circ \widetilde{\alpha}=\alpha$.
Thus $\widetilde{\alpha}$ is the lift of α starting at x_{0} if $\widetilde{\alpha}$ is continuous.

Claim: $\widetilde{\alpha}: I \rightarrow \widetilde{X}$ is continuous. Let $c \in I$.
$B\left(U, \alpha_{c}\right)$ is an arbitrary basis element containing $\widetilde{\alpha}(c)=\alpha_{c}^{\#}$.
$\alpha: I \rightarrow X$ is continuous.
Thus $\exists \varepsilon>0$ such that if $t \in(c-\varepsilon, c+\varepsilon)$, then $\alpha(t) \in U$.
Then $\alpha_{t}^{\#}=\left(\alpha_{c} \delta\right)^{\#} \in B\left(U, \alpha_{c}\right)$

*Note compared to the standard $\delta-\varepsilon$ definition of continuity, our $\varepsilon=$ old δ and our U relates to the old ε.

Step 7. Claim $p_{*}\left(\pi_{1}(\widetilde{X}, \widetilde{x})\right)=H$.
$[\alpha] \in p_{*}\left(\pi_{1}(\widetilde{X}, \widetilde{x})\right)$ iff $\widetilde{\alpha} \in \pi_{1}(\widetilde{X}, \widetilde{x})$
iff $\widetilde{\alpha}$ is a loop in \widetilde{X} based at \widetilde{x}
iff $\alpha^{\#}=\widetilde{\alpha}(1)=\widetilde{x}$ iff $[\alpha]=\left[\alpha * e_{x_{0}}^{-1}\right] \in H$.
Thus $p_{*}\left(\pi_{1}(\widetilde{X}, \widetilde{x})\right)=H$

