
If H < G = π1(X, x0), ∃p : X̃ → X such that p∗(π1(X̃, x̃0)) = H

Step 1: Define X̃ by

1.) P = {[α] | α a path in X starting at x0}.

2.) X̃ = P/ ∼ where α ∼ β iff αβ−1 ∈ H .

Let α# denote the equivalence class of α ∈ P .

Note: If [α] = [β], then α# = β# since αβ−1 = e ∈ H .

Note: If α# = β#, then (αδ)# = (βδ)# when the product is
defined since (αδ)(βδ)−1 = αδδ−1β−1 = αβ−1 ∈ H .

Define p : X̃ → X, p(α#) = α(1).

Note p is onto since X is path connected.

Step 2: Topologize E

Method 1: Give P the compact-open topology

S(C,U) = {α | α : [0, 1]→ X such that α(C) ⊂ U}

S = {S(C,U) | C compact in [0, 1], U open in X} is subbases
for compact-open topology on the set of paths P .

Give X̃ = P/ ∼ the quotient topology.

Or equivalently,



Method 2: Let α ∈ P , U path connected open nbhd of α(1).

B(U, α) = {(α ∗ δ)# | δ path in U such that δ(0) = α(1)}

Claim: {B(U, α) | α ∈ P, U path connected nbhd of α(1)} is

a basis for a topology on X̃ .

1.) α# = (α ∗ eα(1)))# ∈ B(U, α)

2.) Suppose β# ∈ B(U1, α1) ∩B(U2, α2).

β# ∈ B(V, β) ⊂ B(U1, α1) ∩ B(U2, α2) where V is path con-
nected component of U1 ∩ U2 containing β(1).

β# = (α1δ1)
# = (α2δ2)

# implies (βδ)# = (α1δ1δ)
# = (α2δ2δ)#

Claim: β# ∈ B(U, α) implies B(U, α) = B(U, β).

β# ∈ B(U, α) implies β# = (αδ)# implies α# = (βδ−1)#.
Thus α# ∈ B(U, β).

(βδ′)# = (αδδ′)# ∈ B(U, α). Thus B(U, β) ⊂ B(U, α). Simi-
larly, B(U, α) ⊂ B(U, β).



Thus B(U, α) ∩B(U, β) 6= ∅ implies B(U, α) = B(U, β).

Step 3. p is open and continuous.

Note p(B(U, α)) = U since p((αδ)#) = δ(1) and U is path
connected. Thus p is open.

Claim p continuous. Let W be open in X . Let α# ∈ p−1(W ).
Let U be a path connected component ofW such that α(1) ∈ U .
Note U is open. Then α# ∈ B(U, α) ⊂ p−1(W ).

Step 4. Claim: ∀z ∈ X, ∃U open in X such that U is evenly
covered by p.

Let z ∈ X . Take U path connected nbhd of z such that
i∗ : π1(U, z)→ π1(X, z) is trivial.

Note U exists since X is path connected, locally path connected,
and semilocally simply connected.

Claim: p−1(U) =
⋃

α path from x0 to z

B(U, α)

(⊃): Clear since p(B(U, α)) = U .

(⊂): If β# ∈ p−1(U), then β(1) ∈ U .
Let δ be a path in U from z to β(1).
Let α = βδ−1 is a path from x0 to z.
Thus β# = (αδ)# ∈ B(U, α).



Claim: p|B(U,α) : B(U, α)→ U is a bijection.

Onto: Recall p(B(U, α)) = U .

1:1: Suppose p((αδ1)
#) = p((αδ2)

#) where δ1, δ2 ⊂ U .

Then δ1(1) = δ2(1).

Recall i∗ : π1(U, z)→ π1(X, z) is trivial.

Thus δ1δ
−1
2 = e in π1(X, z).

Thus [αδ1] = [αδ2] and (αδ1)
# = (αδ2)

#.

Step 5, 6. X̃ is path connected.

Let x̃ = ex0, the constant path at x0. Then p(x̃) = ex0(1) = x0.

Let α# ∈ X̃ .

Let c ∈ [0, 1]. Define αc : I → X , αc(t) = α(tc).

Thus αc is a path from x0 to α(c).

Define α̃ : I → X̃ by α̃(c) = (αc)
#.

p(α̃(c)) = p((αc)
#) = αc(1) = α(c).

Hence p ◦ α̃ = α.

Thus α̃ is the lift of α starting at x0
if α̃ is continuous.

(X̃, x̃)

�
�
�
�
�
�3

α̃ p
?

I α - (X, x0)



Claim: α̃ : I → X̃ is continuous. Let c ∈ I .

B(U, αc) is an arbitrary basis element containing α̃(c) = α#
c .

α : I → X is continuous.

Thus ∃ε > 0 such that if t ∈ (c− ε, c + ε), then α(t) ∈ U .

Then α#
t = (αcδ)# ∈ B(U, αc)

*Note compared to the standard δ − ε definition of continuity,
our ε = old δ and our U relates to the old ε.

Step 7. Claim p∗(π1(X̃, x̃)) = H .

[α] ∈ p∗(π1(X̃, x̃)) iff α̃ ∈ π1(X̃, x̃)

iff α̃ is a loop in X̃ based at x̃

iff α# = α̃(1) = x̃ iff [α] = [α ∗ e−1x0 ] ∈ H .

Thus p∗(π1(X̃, x̃)) = H


