Recall, assume X, \widetilde{X} path connected \& locally path connected.
$F:\left\{\left.\begin{array}{c}\left(\widetilde{X}, \widetilde{x_{0}}\right) \\ p \mid \\ \left(X, x_{0}\right)\end{array} \right\rvert\, p\right.$ is a covering map $\} \rightarrow\left\{H \mid H<\pi_{1}\left(X, x_{0}\right)\right\}$
$F(p)=p_{*}\left(\pi_{1}\left(\widetilde{X}, \widetilde{x_{0}}\right)\right)$
Note since $p_{*}: \pi_{1}\left(\widetilde{X}, \widetilde{x_{0}}\right) \rightarrow \pi_{1}\left(X, x_{0}\right)$ is a homomorphism, $p_{*}\left(\pi_{1}\left(\widetilde{X}, \widetilde{x_{0}}\right)\right)$ is a subgroup of $\pi_{1}\left(X, x_{0}\right)$. Thus F is well-defined.

Prop (82.1). Suppose X is semilocally simply-connected. Then for every subgroup $H \subset \pi_{1}\left(X, x_{0}\right)$ there is a covering space $p: \widetilde{X_{H}} \rightarrow X$ such that $p_{*}\left(\pi_{1}\left(\widetilde{X_{H}}, \widetilde{x_{0}}\right)\right)=H$ for a suitably chosen basepoint $\widetilde{x_{0}} \in \widetilde{X_{H}}$.

Cor: If X is semilocally simply connected, then F is onto.

Definition 0.1. X is semilocally simply connected if $\forall x \in X, \exists U$ open in X such that $x \in U$ and the homomorphism induced by inclusion is trivial:
$i_{*}: \pi_{1}(U, x) \rightarrow \pi_{1}(X, x), \quad i([\alpha])=[\alpha]=[e]$.

Prop (79.2).

$p_{1}: \widetilde{X_{1}} \rightarrow X$ and $p_{2}: \widetilde{X_{2}} \rightarrow X$ are equivalent
via a pointed homeomorphism $h:\left(\widetilde{X_{1}}, \widetilde{x_{1}}\right) \rightarrow\left(\widetilde{X_{2}}, \widetilde{x_{2}}\right)$
if and only if

$$
\left(p_{1}\right)_{*}\left(\pi_{1}\left(\widetilde{X_{1}}, \widetilde{x_{1}}\right)\right)=\left(p_{2}\right)_{*}\left(\pi_{1}\left(\widetilde{X_{2}}, \widetilde{x_{2}}\right)\right) .
$$

Cor: If $F(p)=p_{*}\left(\pi_{1}\left(\widetilde{X}, \widetilde{x_{0}}\right)\right)=H$, then
$F^{-1}(H)=\left\{\pi_{1}\left(\widetilde{X_{1}}, \widetilde{x_{1}}\right) \mid \exists\right.$ homeomorphism $h:\left(\widetilde{X}, \widetilde{x_{0}}\right) \rightarrow\left(\widetilde{X_{2}}, \widetilde{x_{2}}\right)$ such that above diagram commutes $\}$

Cor: F is $1: 1$ if we mod out by pointed equivalence.

Example:

PROP (79.3a). Given covering map $\underset{\dot{X}_{X}}{\tilde{X}}$ and $\widetilde{x_{1}}, \widetilde{x_{2}} \in p^{-1}\left(x_{0}\right)$,
$p_{*}\left(\pi_{1}\left(\widetilde{X}, \widetilde{x_{1}}\right)\right)$ and $p_{*}\left(\pi_{1}\left(\widetilde{X}, \widetilde{x_{2}}\right)\right)$ are conjugate in $\pi_{1}\left(X, x_{0}\right)$.
Moreover, let $H_{1}=p_{*}\left(\pi_{1}\left(\widetilde{X}, \widetilde{x_{1}}\right)\right)$ and $H_{2}=p_{*}\left(\pi_{1}\left(\widetilde{X}, \widetilde{x_{2}}\right)\right)$, let γ be a path in \widetilde{X} from $\widetilde{x_{1}}$ to $\widetilde{x_{2}}$, and let $\alpha=p \circ \gamma \in \pi_{1}\left(X, x_{0}\right)$ then $H_{1}=\alpha H_{2} \alpha^{-1}$

$$
\left(\widetilde{X}, \widetilde{x_{0}}\right)
$$

$\operatorname{Prop}(79.3 \mathrm{~b})$. Given covering map $\begin{array}{r} \\ \left(X, x_{0}\right)\end{array}, H_{0}=p_{*}\left(\pi_{1}\left(\widetilde{X}, \widetilde{x_{0}}\right)\right)$.
If H is a subgroup of $\pi_{1}\left(X, x_{0}\right)$, such that $H_{0}=\alpha H \alpha^{-1}$, then
$\exists \widetilde{x_{1}} \in p^{-1}\left(x_{0}\right)$ such that $H=p_{*}\left(\pi_{1}\left(\widetilde{X_{1}}, \widetilde{x_{1}}\right)\right)$.

Example:

Prop (79.4).

Suppose $p_{1}\left(\widetilde{x_{1}}\right)=p_{2}\left(\widetilde{x_{2}}\right)=x_{0}$ The covering maps p_{1}, and p_{2} are equivalent iff the subgroups $\left(p_{1}\right)_{*}\left(\pi_{1}\left(\widetilde{X_{1}}, \widetilde{x_{1}}\right)\right)$ and $\left(p_{2}\right)_{*}\left(\pi_{1}\left(\widetilde{X_{2}}, \widetilde{x_{2}}\right)\right)$ are conjugate in $\pi_{1}\left(X, x_{0}\right)$.

Note if $h\left(\widetilde{x_{1}}\right)=\widetilde{x_{2}}$, then $\left(p_{1}\right)_{*}\left(\pi_{1}\left(\widetilde{X_{1}}, \widetilde{x_{1}}\right)\right)=\left(p_{2}\right)_{*}\left(\pi_{1}\left(\widetilde{X_{2}}, \widetilde{x_{2}}\right)\right)$
If $h\left(\widetilde{x_{1}}\right) \neq \widetilde{x_{2}}$, then
$\left(p_{1}\right)_{*}\left(\pi_{1}\left(\widetilde{X_{1}}, \widetilde{x_{1}}\right)\right)=\alpha\left[\left(p_{2}\right)_{*}\left(\pi_{1}\left(\widetilde{X_{2}}, \widetilde{x_{2}}\right)\right)\right] \alpha^{-1}$ for some $\alpha^{-1} \neq e$
$F:\left\{\left.\begin{array}{c}\left(\widetilde{X}, \widetilde{x_{0}}\right) \\ p \\ \left(X, x_{0}\right)\end{array} \right\rvert\, p\right.$ is a covering map $\} \rightarrow\left\{H \mid H<\pi_{1}\left(X, x_{0}\right)\right\}$
$F(p)=p_{*}\left(\pi_{1}\left(\widetilde{X}, \widetilde{x_{0}}\right)\right)$
Let $[H]$ denote the conjugacy class of H in $\pi_{1}\left(X, x_{0}\right)$:

$$
[H]=\left\{K \mid K=g H g^{-1}\right\}
$$

Let $[p]$ denote the set of covering maps equivalent to p. Then
$F:\{[p]\} \rightarrow\{[H]\}$ is a bijection if X semilocally simply connected.

