Recall, assume X, \widetilde{X} path connected & locally path connected.

$$F: \left\{ \begin{array}{l} (\widetilde{X}, \widetilde{x_0}) \\ p \\ \downarrow \\ (X, x_0) \end{array} \mid p \text{ is a covering map} \right\} \to \{H \mid H < \pi_1(X, x_0)\}$$

$$F(p) = p_*(\pi_1(\widetilde{X}, \widetilde{x_0}))$$

Note since $p_* : \pi_1(\widetilde{X}, \widetilde{x_0}) \to \pi_1(X, x_0)$ is a homomorphism, $p_*(\pi_1(\widetilde{X}, \widetilde{x_0}))$ is a subgroup of $\pi_1(X, x_0)$. Thus F is well-defined.

PROP (82.1). Suppose X is semilocally simply-connected. Then for every subgroup $H \subset \pi_1(X, x_0)$ there is a covering space $p: \widetilde{X}_H \to X$ such that $p_*(\pi_1(\widetilde{X}_H, \widetilde{x}_0)) = H$ for a suitably chosen basepoint $\widetilde{x}_0 \in \widetilde{X}_H$.

Cor: If X is semilocally simply connected, then F is onto.

DEFINITION 0.1. X is semilocally simply connected if $\forall x \in X, \exists U \text{ open in } X \text{ such that } x \in U \text{ and the homomorphism induced by inclusion is trivial:}$

 $i_*: \pi_1(U, x) \to \pi_1(X, x), \qquad i([\alpha]) = [\alpha] = [e].$

Prop (79.2).

 $p_1: \widetilde{X_1} \to X$ and $p_2: \widetilde{X_2} \to X$ are equivalent via a pointed homeomorphism $h: (\widetilde{X_1}, \widetilde{x_1}) \to (\widetilde{X_2}, \widetilde{x_2})$

if and only if

 $(p_1)_*(\pi_1(\widetilde{X}_1, \widetilde{x}_1)) = (p_2)_*(\pi_1(\widetilde{X}_2, \widetilde{x}_2)).$

Cor: If $F(p) = p_*(\pi_1(\widetilde{X}, \widetilde{x_0})) = H$, then

 $F^{-1}(H) = \{ \pi_1(\widetilde{X_1}, \widetilde{x_1}) \mid \exists \text{homeomorphism } h \colon (\widetilde{X}, \widetilde{x_0}) \to (\widetilde{X_2}, \widetilde{x_2}) \\ \text{such that above diagram commutes } \}$

Cor: F is 1:1 if we mod out by pointed equivalence.

Example:

PROP (79.3a). Given covering map $\begin{array}{c} \widetilde{X} \\ p \\ \downarrow \\ X \end{array}$ and $\widetilde{x_1}, \widetilde{x_2} \in p^{-1}(x_0), \\ X \end{array}$

 $p_*(\pi_1(\widetilde{X}, \widetilde{x_1}))$ and $p_*(\pi_1(\widetilde{X}, \widetilde{x_2}))$ are conjugate in $\pi_1(X, x_0)$.

Moreover, let $H_1 = p_*(\pi_1(\widetilde{X}, \widetilde{x_1}))$ and $H_2 = p_*(\pi_1(\widetilde{X}, \widetilde{x_2}))$, let γ be a path in \widetilde{X} from $\widetilde{x_1}$ to $\widetilde{x_2}$, and let $\alpha = p \circ \gamma \in \pi_1(X, x_0)$ then $H_1 = \alpha H_2 \alpha^{-1}$

PROP (79.3b). Given covering map $\begin{array}{c} (\widetilde{X}, \widetilde{x_0}) \\ p \\ \downarrow \\ (X, x_0) \end{array}$, $H_0 = p_*(\pi_1(\widetilde{X}, \widetilde{x_0})).$

If H is a subgroup of $\pi_1(X, x_0)$, such that $H_0 = \alpha H \alpha^{-1}$, then

$$\exists \widetilde{x_1} \in p^{-1}(x_0) \text{ such that } H = p_*(\pi_1(\widetilde{X_1}, \widetilde{x_1})).$$

Example:

Prop (79.4).

Suppose $p_1(\widetilde{x}_1) = p_2(\widetilde{x}_2) = x_0$ The covering maps p_1 , and p_2 are equivalent iff the subgroups $(p_1)_*(\pi_1(\widetilde{X}_1, \widetilde{x}_1))$ and $(p_2)_*(\pi_1(\widetilde{X}_2, \widetilde{x}_2))$ are conjugate in $\pi_1(X, x_0)$.

Note if $h(\widetilde{x_1}) = \widetilde{x_2}$, then $(p_1)_*(\pi_1(\widetilde{X_1}, \widetilde{x_1})) = (p_2)_*(\pi_1(\widetilde{X_2}, \widetilde{x_2}))$ If $h(\widetilde{x_1}) \neq \widetilde{x_2}$, then

 $(p_1)_*(\pi_1(\widetilde{X_1}, \widetilde{x_1})) = \alpha[(p_2)_*(\pi_1(\widetilde{X_2}, \widetilde{x_2}))]\alpha^{-1} \text{ for some } \alpha^{-1} \neq e$

$$F: \left\{ \begin{array}{l} (\widetilde{X}, \widetilde{x_0}) \\ p \\ \downarrow \\ (X, x_0) \end{array} \mid p \text{ is a covering map} \right\} \to \{H \mid H < \pi_1(X, x_0)\}$$

 $F(p) = p_*(\pi_1(\widetilde{X}, \widetilde{x_0}))$

Let [H] denote the conjugacy class of H in $\pi_1(X, x_0)$: $[H] = \{K \mid K = gHg^{-1}\}$

Let [p] denote the set of covering maps equivalent to p. Then $F : \{[p]\} \to \{[H]\}$ is a bijection if X semilocally simply connected.