PROPOSITION 1.

 $p_1: \widetilde{X}_1 \to X$ and $p_2: \widetilde{X}_2 \to X$ are equivalent via a homeomorphism $h: \widetilde{X}_1 \to \widetilde{X}_2$ taking a basepoint $\widetilde{x}_1 \in p_1^{-1}(x_0)$ to a basepoint $\widetilde{x}_2 \in p_2^{-1}(x_0)$

if and only if

$$(p_1)_*(\pi_1(\widetilde{X}_1, \widetilde{x}_1)) = (p_2)_*(\pi_1(\widetilde{X}_2, \widetilde{x}_2)).$$

Example:

 $(p_1)_*(\pi_1(\widetilde{X_1}, \widetilde{x_1})) = \langle a, b, bab^{-1} \rangle = (p_2)_*(\pi_1(\widetilde{X_2}, \widetilde{x_2})).$

PROPOSITION 2. Given covering map $\begin{array}{c} X \\ p \\ \downarrow \\ X \end{array}$ and $\widetilde{x_1}, \widetilde{x_2} \in p_1^{-1}(x_0), \\ X \end{array}$

 $p_*(\pi_1(\widetilde{X}, \widetilde{x_1}))$ and $p_*(\pi_1(\widetilde{X}, \widetilde{x_2}))$ are conjugate in $\pi_1(X, x_0)$.

Moreover, let $H_1 = p_*(\pi_1(\widetilde{X}, \widetilde{x_1}))$ and $H_2 = p_*(\pi_1(\widetilde{X}, \widetilde{x_2}))$, let γ be a path in \widetilde{X} from $\widetilde{x_1}$ to $\widetilde{x_2}$, and let $\alpha = p \circ \gamma \in \pi_1(X, x_0)$ then $H_0 = \alpha H_1 \alpha^{-1}$

$$\begin{split} H_1 &= (p_1)_*(\pi_1(\widetilde{X}, \widetilde{x_1})) = \langle a, b^2, ba^2b^{-1}, baba^{-1}b^{-1} \rangle \\ H_2 &= (p_2)_*(\pi_1(\widetilde{X}, \widetilde{x_2})) = \langle bab^{-1}, b^2, a^2, aba^{-1} \rangle \\ bH_2b^{-1} &= \langle bbab^{-1}b^{-1}, bb^2b^{-1}, ba^2b^{-1}, baba^{-1}b^{-1} \rangle \\ &= \langle b^2ab^{-2}, b^2, ba^2b^{-1}, baba^{-1}b^{-1} \rangle \\ a, b^2 \in H_1 \text{ implies } b^2ab^{-2} \in H_1 \\ b^2, b^2ab^{-2} \in bH_2b^{-1} \text{ implies } b^{-2}b^2ab^{-2}b^2 = a \in bH_2b^{-1} \\ \text{Thus } H_1 = bH_2b^{-1} \end{split}$$

PROPOSITION 3. Given covering map $\begin{array}{c} (\widetilde{X},\widetilde{x_0}) \\ p \\ \downarrow \\ (X,x_0) \end{array}$, $H_0 = p_*(\pi_1(\widetilde{X},\widetilde{x_0})).$

If H is a subgroup of $\pi_1(X, x_0)$, such that $H_0 = \alpha H \alpha^{-1}$, then

 $\exists \widetilde{x_1} \in p_1^{-1}(x_0) \text{ such that } H = (p_1)_*(\pi_1(\widetilde{X_1}, \widetilde{x_1})).$

PROPOSITION 4.

Suppose $p_1(\widetilde{x}_1) = p_2(\widetilde{x}_2) = x_0$ The covering maps p_1 , and p_2 are equivalent iff the subgroups $(p_1)_*(\pi_1(\widetilde{X}_1, \widetilde{x}_1))$ and $(p_2)_*(\pi_1(\widetilde{X}_2, \widetilde{x}_2))$ are conjugate in $\pi_1(X, x_0)$.

Subgroups of \mathbb{Z} are $\{e\}$, and $n\mathbb{Z}$, n = 1, 2, 3, ...

By the above proposition, any covering map of S^1 is equivalent to one of the covering maps above.

PROPOSITION 5.

Let p, q, r be continuous maps with $p = r \circ q$. Then

i.) If q and r are covering maps and if either (Z has a universal covering space) or $(r^{-1}(z)$ is finite for all $z \in Z$), then p is a covering map.

ii.) If p and r are covering maps, then q is a covering map.

iii.) If p and q are covering maps, then r is a covering map.

PROPOSITION 6. If p is a covering map and if $\pi_1(\widetilde{X}) = \{e\}$, then given any covering map r, there exists covering map q such that $p = r \circ q$.

DEFINITION 0.1. If $\begin{array}{c} \widetilde{\widetilde{X}} \\ p \\ \downarrow \\ X \end{array}$ is a covering map and if $\pi_1(\widetilde{\widetilde{X}}) = \{e\}$, then $\widetilde{\widetilde{X}}$ is called the *universal covering space of* X.