Thm 3.1.1: Pigeonhole Principle (weak form): If you have $n+1$ objects placed in n boxes, then at least one box will be occupied by 2 or more objects.

Thm 3.1.1: Pigeonhole Principle (weak form): If you have $n+1$ pigeons in n pigeonholes, then at least one pigeonhole will be occupied by 2 or more pigeons.

Thm 3.1.1: If $f: A \rightarrow B$ is a function and $|A|=n+1$, and $|B|=n$, then f is not 1:1.

Thm 3.2.1 Pigeonhole Principle (strong form): Let $q_{1}, q_{2}, \ldots, q_{n}$ be positive integers. If $q_{1}+q_{2}+\ldots+q_{n}-$ $n+1$ objects are put into n boxes, then for some i the i th box contains at least q_{i} objects

Proof Outline:

Cor: Pigeonhole Principle (weak form):
Proof. Let $q_{i}=2$ for all i.

Cor: If $n(r-1)+1$ objects are put into n boxes, then there exists a box containing at least r objects.

Proof: Let $q_{i}=r$ for all i. Note $n r-n+1=$ $n(r-1)+1$.

Cor A: If $m_{i}, r \in \mathcal{Z}_{+}$and if $\frac{m_{1}+\ldots+m_{n}}{n}>r-1$, then there exists an i such that $m_{i} \geq r$.

Cor A: If $m_{i} \in \mathcal{Z}_{+}$and if $\frac{m_{1}+\ldots+m_{n}}{n} \geq r$, then there exists an i such that $m_{i} \geq r$.

Lemma B: If $\frac{m_{1}+\ldots+m_{n}}{n}<r$, then there exists an i s. t. $m_{i}<r$.

Appl 7: If you have an arbitrary number of apples, bananas and oranges, what is the smallest number of these fruits that one needs to put in a basket in order to guarantee there are at least 8 apples or at least 6 bananas or at least 9 oranges in the basket.

Appl: Suppose you have 20 pairs of socks. If 7 are black and 13 are white, and if you grab n socks at random, what should n be so that you are guaranteed to have a pair of socks of the same color.

Appl: Suppose you have 20 pairs of different shoes in your closet. If you grab n shoes at random, what should n be so that you are guaranteed to have a matching pair of shoes.

Appl 9: Show that every sequence $a_{1}, a_{2}, \ldots, a_{n^{2}+1}$ contains either an increasing or decreasing subsequence of length $n+1$.

Example $(n=2)$:

$$
a_{1}=\quad, a_{2}=\quad, a_{3}=\quad, a_{4}=\quad, a_{5}=
$$

Let $m_{k}=$ length of largest increasing subsequence beginning with a_{k}.
$a_{1}:$

$$
m_{1}=
$$

$$
m_{2}=
$$

$a_{3}:$	$m_{3}=$
$a_{4}:$	$m_{4}=$
$a_{5}:$	$m_{5}=$

Example $(n=2)$:
$a_{1}=8, a_{2}=4, a_{3}=10, a_{4}=6, a_{5}=4$
Need $n+1$ objects in our subsequence. Suppose $r=n+1$.

Hence might need $n(r-1)+1=n(n+1-1)+1=$ $n^{2}+1$ objects in n boxes in order to obtain at least $r=n+1$ objects in one of the boxes.

Let $m_{k}=$ length of largest increasing subsequence beginning with a_{k}.

$$
8 \quad 8,10 \quad m_{1}=2
$$

4
4, 10
4, 6
4, 4
$m_{2}=2$
$10 m_{3}=1$
$6 \quad m_{4}=1$
$4 \quad m_{5}=1$
Proof: Let $m_{k}=$ length of largest increasing subsequence beginning with $a_{k}, k=1, \ldots, n^{2}+1$.

Suppose there exists an $m_{k} \geq n+1$. Then there exists an increasing subsequence of length $m_{k} \geq n+$ 1. Hence there exists an increasing subsequence of
length $n+1$.
Suppose $m_{k}<n+1$. Then $m_{k}=1,2, \ldots$, or n.
Hence there exists an i such that $m_{k}=i$ for $n+1$ a_{k} 's.

There exists $a_{k_{1}}, a_{k_{2}}, \ldots, a_{k_{n+1}}$ such that

$$
m_{k_{1}}=m_{k_{2}}=\ldots=m_{k_{n+1}}=i
$$

Show $a_{k_{1}}, a_{k_{2}}, \ldots, a_{k_{n+1}}$ is a decreasing sequence.
Suppose not. Then there exists a j such that $a_{k_{j}}>$ $a_{k_{j+1}}$.
\exists an increasing subsequence of length i starting at $a_{k_{j}}$

There does not exist an increasing subsequence of length $i+1$ starting at $a_{k_{j}}$
\exists an increasing subsequence of length i starting at $a_{k_{j+1}}$

There does not exist an increasing subsequence of length $i+1$ starting at $a_{k_{j+1}}$

Suppose $a_{k_{j+1}}, a_{h_{2}}, a_{h_{3}}, \ldots, a_{h_{i}}$ is an increasing subsequence of length i.

Then $a_{k_{j}}, a_{k_{j+1}}, a_{h_{2}}, a_{h_{3}}, \ldots, a_{h_{i}}$ is an increasing subsequence of length $i+1$, a contradiction.

Application 6: Chinese remainder theorem:
Suppose $m, n, a, b \in \mathcal{Z},(m, n)=1,0 \leq a \leq m-1$, $0 \leq b \leq n-1$, then $\exists x \geq 0$ such that $x=p m+a=$ $q n+b$ for $p, q \in \mathcal{Z}$.

Moreover can take $p \in\{0, \ldots, n-1\}$.

Scratch work:
a is the remainder when x is divided by m. b is the remainder when x is divided by n.
$x=a \bmod m, \quad x=b \bmod n$.

Proof plus thoughts:
We need to use the Pigeonhole principle (or related theorem). Thus we need to create objects. We are interested in $p m+a$ for some unknown $p \in \mathcal{Z}$. Thus one idea is to create the following objects:
$\mathcal{O}=\{a, m+a, 2 m+a, \ldots,(n-1) m+a\}$.
Note \mathcal{O} has distinct objects.

We need to create boxes. What else are we interested in? How about remainders?

Let $r_{k}=$ the remainder of $k m+a$ when divided by n.

Properties of r_{k} :

