

Let X be a CW complex. $X^{0}=$ set of points with discrete topology. Given the ($\mathrm{n}-1$)-skeleton $\mathrm{X}^{\mathrm{n}-1}$, form the n -skeleton, X_{n}, by attaching n -cells via attaching maps $\sigma_{\alpha}: \partial D_{\alpha}^{n} \rightarrow X^{n-1}$, I.e., $X^{n}=X^{n-1}$ y D_{α}^{n} / \sim where $\mathrm{x}^{\sim} \sigma_{\alpha}(\mathrm{x})$ for all x in ∂D_{α}^{n} The characteristic map $\Phi_{\alpha}: \mathrm{D}_{\alpha}^{n} \rightarrow \mathrm{X}$ is the map that extends the attaching map $\sigma_{\alpha}: \partial D_{\alpha}^{n} \rightarrow X^{n-1}$ and $\Phi_{\alpha} \mid D_{\alpha}^{n}$ onto its image is a homeomorphism. Φ_{α} is the composition $D_{\alpha}^{n} \rightarrow X_{\beta}^{n-1} \underset{\beta}{D^{n}} \rightarrow X^{n} \rightarrow X$

Your name homology

3 ingredients:

1.) Objects
2.) Grading
3.) Boundary map

Grading
Grading: Each object is assigned a unique grade.
Let $X_{n}=\left\{x_{1}, \ldots, x_{k}\right\}=$ generators of grade n.
Extend grading on the set of generators to the set
of n-chains: $C_{n}=$ set of n-chains $=R\left[X_{n}\right]$
Normally n-chains in C_{n} are assigned to the grade n.

Nerve Lemma: If V is a finite collection of subsets of X with all non-empty intersections of subcollections of V contractible, then $\mathrm{N}(\mathrm{V})$ is homotopic to the union of elements of V.

Čech homology
Given $\underset{\alpha \text { in } A}{U} V_{\alpha}$ where V_{α} open for all α in A.
Objects = finite intersections $=\left\{\bigcap_{i=1}^{n} V_{\alpha_{i}}: \alpha_{i}\right.$ in $\left.A\right\}$
Grading $=n=$ depth of intersection.
$\partial_{n+1}\left(\bigcap_{i=1}^{n} V_{\alpha_{i}}\right)=\sum_{j=1}^{n}\left(\prod_{\substack{i=1 \\ i \neq j}}^{n} V_{i \alpha}\right)$
Ex: $\partial_{0}\left(V_{\alpha}\right)=0, \quad \partial_{1}\left(V_{\alpha} \cap V_{\beta}\right)=V_{\alpha}+V_{\beta}$
$\partial_{2}\left(V_{\alpha} \cap V_{\beta} \cap V_{\gamma}\right)=\left(V_{\alpha} \cap V_{\beta}\right)+\left(V_{\alpha} \cap V_{\gamma}\right)+\left(V_{\beta} \cap V_{\gamma}\right)$

Let $\left\{v_{0}, v_{1}, \ldots, v_{n}\right\}$ be a simplex.

A subset of $\left\{v_{0}, v_{1}, \ldots, v_{n}\right\}$ is called a face of this simplex.

Ex: The faces of

are $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right\},\left\{\mathrm{v}_{2}, \mathrm{v}_{3}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{3}\right\},\left\{\mathrm{v}_{1}\right\},\left\{\mathrm{v}_{2}\right\},\left\{\mathrm{v}_{3}\right\}$

A simplicial complex K is a set of simplices that satisfies the following conditions:

1. Any face of a simplex from K is also in K.
2. The intersection of any two simplices in K is either empty or a face of both the

A simplicial complex K is a set of simplices that satisfies the following conditions:

1. Any face of a simplex from K is also in K.
2. The intersection of any two simplices in K is either empty or a face of both the simplices.

Standard triangulation of the torus:

Building blocks for oriented simplicial complex			
3-simplex $=$			
σ	$=\left(v_{1}, v_{2}, v_{3}, v_{4}\right)=\left(v_{2}, v_{3}, v_{1}, v_{4}\right)=\left(v_{3}, v_{1}, v_{2}, v_{4}\right)$		
	$=\left(v_{2}, v_{1}, v_{4}, v_{3}\right)=\left(v_{3}, v_{2}, v_{4}, v_{1}\right)=\left(v_{1}, v_{3}, v_{4}, v_{2}\right)$		
	$=\left(v_{4}, v_{2}, v_{1}, v_{3}\right)=\left(v_{4}, v_{3}, v_{2}, v_{1}\right)=\left(v_{4}, v_{1}, v_{3}, v_{2}\right)$		
	$=\left(v_{1}, v_{4}, v_{2}, v_{3}\right)=\left(v_{2}, v_{4}, v_{3}, v_{1}\right)=\left(v_{3}, v_{4}, v_{1}, v_{2}\right)$		
$-\sigma$	$=\left(v_{2}, v_{1}, v_{3}, v_{4}\right)=\left(v_{3}, v_{2}, v_{1}, v_{4}\right)=\left(v_{1}, v_{3}, v_{2}, v_{4}\right)$		
	$=\left(v_{2}, v_{4}, v_{1}, v_{3}\right)=\left(v_{3}, v_{4}, v_{2}, v_{1}\right)=\left(v_{1}, v_{4}, v_{3}, v_{2}\right)$		
	$=\left(v_{1}, v_{2}, v_{4}, v_{3}\right)=\left(v_{2}, v_{3}, v_{4}, v_{1}\right)=\left(v_{3}, v_{1}, v_{4}, v_{2}\right)$		
\quad	$\left(v_{4}, v_{1}, v_{2}, v_{3}\right)=\left(v_{4}, v_{2}, v_{3}, v_{1}\right)=\left(v_{4}, v_{3}, v_{1}, v_{2}\right)$		
v_{2}		\quad	$v_{1} \quad v_{4}$
---:	:---		

Building blocks for a Δ-complex	
0 -simplex $=$ vertex $=$	- Grading = dimension
1-simplex $=$ oriented edge $=\left[\mathrm{v}_{0}, \mathrm{v}_{1}\right]$	
$\mathrm{v}_{0} \xrightarrow[\mathrm{e}]{\longrightarrow} \mathrm{v}_{1}$	Note that the boundary of this edge is $v_{1}-v_{0}$
2-simplex $=$ oriented face $=\left[\mathrm{v}_{0}, \mathrm{v}_{1}, \mathrm{v}_{2}\right]$	
	Note that the boundary of this face is the cycle $\begin{gathered} e_{1}+e_{2}-e_{3} \\ =\left[v_{0}, v_{1}\right]+\left[v_{1}, v_{2}\right]-\left[v_{0}, v_{2}\right] \\ =\left[v_{1}, v_{2}\right]-\left[v_{0}, v_{2}\right]+\left[v_{0}, v_{1}\right] \end{gathered}$

Building blocks for an abstract simplicial complex
0 -simplex $=$ vertex $=\{\mathrm{v}\}$
1-simplex $=$ edge $=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right\}$
n-simplex $=\left\{v_{0}, v_{1}, \ldots, v_{n}\right\}$
Let V be a finite set.
A finite abstract simplicial complex is
a subset A of $P(V)$ such that
1.) v in V implies $\{v\}$ in A, then
2.) if X is in A and if $Y \subset X$, then Y is in A

Building blocks for a simplicial complex

0 -simplex $=$ vertex $=v$
1-simplex $=$ oriented edge $=\left(v_{0}, v_{1}\right)$
Note that the boundary
of this edge is $v_{1}-v_{0}$

2-simplex $=$ oriented face $=\left(v_{0}, v_{1}, v_{2}\right)$
Note that the boundary
of this face is the cycle
v_{1}

Let X be a CW complex.
$X^{0}=$ set of points with discrete topology.
Given the ($\mathrm{n}-1$)-skeleton $\mathrm{X}^{\mathrm{n}-1}$, form the n-skeleton, X_{n}, by attaching n-cells via attaching maps $\sigma_{\alpha}: \partial D_{\alpha}^{n} \rightarrow X^{n-1}$,
I.e., $X^{n}=X^{n-1} \underset{\alpha}{ } D_{\alpha}^{n} / \sim$ where $\mathrm{x}^{\sim} \sigma_{\alpha}(x)$ for all x in ∂D_{α}^{n}

The characteristic map $\Phi_{\alpha}: \mathrm{D}_{\alpha}^{n} \rightarrow \mathrm{X}$ is the map that extends the attaching map $\sigma_{\alpha}: \partial D_{\alpha}^{n} \rightarrow X^{n-1}$
and $\Phi_{\alpha} \mid \stackrel{D}{\alpha}_{\alpha}^{n}$ onto its image is a homeomorphism.
Φ_{α} is the composition $D_{\alpha}^{n} \rightarrow X_{\beta}^{n-1} \underset{\beta}{D_{\beta}^{n}} \rightarrow X^{n} \rightarrow X$

Building blocks for a Δ-complex
$X^{0}=$ set of points with discrete topology.
Given the ($n-1$)-skeleton X^{n-1}, form the n-skeleton, X_{n}, by attaching n-cells via their ($n-1$)-faces via attaching maps $\sigma_{\beta}: D^{n-1} \rightarrow X^{n-1}$ such that $\sigma_{\beta} \mid D^{n-1}$ is a homeomorphism.

Example: sphere $=\left\{x\right.$ in $\left.R^{3}:\|x\|=1\right\}$

$$
\mathrm{C}_{3} \xrightarrow{\partial_{3}} \mathrm{C}_{2} \xrightarrow{\partial_{2}} \mathrm{C}_{1} \xrightarrow{\partial_{\mathrm{C}}} \mathrm{C}_{\mathrm{O}}^{\partial_{\mathrm{O}}}
$$

$$
0 \rightarrow \mathrm{R}^{2} \rightarrow \mathrm{R}^{3} \rightarrow \mathrm{R}^{3} \rightarrow 0
$$

Δ-complex
$\mathrm{C}_{3} \xrightarrow{\partial_{3}} \mathrm{C}_{2} \xrightarrow{\partial_{2}} \mathrm{C}_{1} \xrightarrow{\partial_{\mathrm{C}}} \mathrm{C}_{0} \xrightarrow{\partial_{0}}$
$H_{0}=Z_{0} / B_{0}=R^{3} / R^{2}=R$

$$
=
$$

$$
0 \rightarrow \mathrm{R}^{2} \rightarrow \mathrm{R}^{3} \rightarrow \mathrm{R}^{3} \rightarrow 0
$$

Example: sphere $=\left\{x\right.$ in $\left.R^{3}:\|x\|=1\right\}$
$\mathrm{C}_{3} \xrightarrow{\partial_{3}} \mathrm{C}_{2} \xrightarrow{\partial_{2}} \mathrm{C}_{1} \rightarrow \mathrm{C}_{0} \xrightarrow{\partial_{3}} 0$

Cell

- $u+2$

Singular homology

A singular n-simplex in a space X is a map

$$
\sigma: \Delta^{n} \rightarrow X
$$

These n-simplices form a basis for $C_{n}(X)$.
$\partial_{n}(\sigma)=\Sigma(-1)^{i} \sigma \mid\left[v_{0}, \ldots, \widehat{v}_{i}, \ldots, v_{n}\right]$
Note if X and Y are homeomorphic, then

$$
H_{n}(X)=H_{n}(Y)
$$

