We will use: to prove p implies q, one should assume the hypothesis p and prove the conclusion q.

Use induction to prove that if a simple connected graph G has at least 3 vertices, and if each vertex is of degree 2, then G is a cycle.

Proof by induction on |V(G)|

Base case: Suppose |V(G)| = 3. Then each vertex of G is adjacent to the other two vertices of G. Thus G is the complete graph on 3 vertices. Thus $G = K_3$. Note K_3 is a cycle.

Let S(n) be the statement that "If G is a simple connected graph with n vertices, and if each vertex is of degree 2, then G is a cycle."

We need to prove that S(n) implies S(n+1).

Thus we assume the hypothesis, S(n), and prove the conclusion, S(n+1).

Induction hypothesis: If G' is a simple connected graph with n vertices, and if each vertex is of degree 2, then G' is a cycle.

Claim: If G is a simple connected graph with n+1 vertices, and if each vertex is of degree 2, then G is a cycle.

To prove that the claim is true, we again assume the hypothesis and prove the conclusion:

Suppose G is a simple connected graph with n + 1 vertices, and each vertex is of degree 2.

Claim: G is a cycle.

We need to use both the hypothesis that G is a simple connected graph with n + 1 vertices, and each vertex is of degree 2, as well as the induction hypothesis. To use the induction hypothesis, we need to create a graph with n vertices that satisfies the hypotheses of the induction hypothesis.

Let v be a vertex of G. Let $N(v) = \{x, y\}$

Let $G^* = G - v$. Note G^* does not satisfy the hypotheses of the induction hypothesis (G^* has 2 vertices with degree 1, but we need all vertices to have degree 2 to use the induction hypothesis). So instead

Let G' = (V', E') where V' = V(G) - v and $E' = E(G) \cup \{\langle x, y \rangle\} - \{\langle v, x \rangle, \langle y, v \rangle\}$

Note G' is a simple connected graph with n vertices, and each vertex is of degree 2. Thus by the induction hypothesis, G' is a cycle.

We now need to show G is a cycle. Sometimes it helps to be specific.

G' is a cycle means we can write G' as the cycle, $x, u_1, u_2, \dots, u_{n-2}, y, x$.

Then G is the cycle $v, x, u_1, u_2, \dots, u_{n-2}, y, v$

Note induction gives you lots of hypothesis to work with.

Let S(n) be the statement that p(n) implies q(n)

where p(n) is the hypothesis that depends on n and q(n) is the conclusion that depends on n (for example if G has n vertices).

To use induction, you prove

(1) Base case: $S(n_0)$ is true.

and that

(2) S(n) implies S(n+1)

(1) and (2) implies that $S(n_0)$ is true which implies that $S(n_0 + 1)$ is true which implies that $S(n_0 + 2)$ is true which implies that $S(n_0 + 3)$ is true which implies that

Thus S(m) is true for any integer $m \ge n_0$.

To prove S(n) implies S(n+1), you assume hypothesis and prove conclusion:

Induction hypothesis: Suppose S(n) is true.

Claim: S(n+1) is true

Note S(n+1) is the statement that p(n+1) implies q(n+1). Thus we need to prove:

Claim: p(n+1) implies q(n+1)

To prove p(n+1) implies q(n+1), you assume hypothesis and prove conclusion:

Suppose p(n+1) holds.

Claim q(n+1) holds.

Thus to prove the claim that q(n + 1) is true, you can use both p(n + 1) and S(n). Thus you take an arbitrary graph, G, satisfying the hypothesis p(n +1), modify this graph, creating a new graph, G' so that you can use S(n).