TUTORIAL SESSION ON PROOF TECHNIQUES

GTCN 2014 teaching crew

April 2, 2014

1

http://www.few.vu.nl/~rbakhshi/teaching/induction-handout.pdf See also http://www.few.vu.nl/~rbakhshi/teaching/induction.pdf

PROOF METHODS

DIRECT PROOF: Assume the condition, and prove the statement using known axioms, facts and theorems.

- BY CONSTRUCTION: **If sufficient**, give example/counter-example.
- BY CONTRADICTION: Assume the opposite of the statement, and prove that it leads to obviously false claim.
- BY INDUCTION: In three stages: base case, hypothesis and induction step.
- By (MATHEMATICAL) INDUCTION
- A task of the form:

for $n \ge n_0$, show that S(n).

- A proof consists of these steps
 - Base case: assuming $n = n_0$, show that $S(n_0)$ holds.
 - Inductive step: Show that if S(k) holds, then S(k+1) holds.

(see Note 2.14 of the coursebook)

(MATHEMATICAL) INDUCTION

A task of the form:

```
for n \ge n_0, show that S(n).
```

A proof consists of these steps

- Base case: assuming $n = n_0$, show that $S(n_0)$ holds.
- Inductive step: Show that if S(k) holds, then S(k+1) holds.

(see Note 2.14 of the coursebook)

S(n) is a statement that depends on some integer n > 0.

- EXAMPLE (INTEGER n?)
 - size of vertex set
 - size of edge set
 - number of cycles
 - number of colors

Intro

INDUCTIVE PROOF

What should inductive proof contain:

INDUCTION BASIS: what induction is performed on, S(n)

BASE CASE: the proof of $S(n_0)$ = True for the initial value of $n = n_0$

INDUCTION STEP: assuming S(k) holds, proof of S(k+1) = True. Also, how the induction hypothesis S(k) is applied.

More on Induction Step

Assuming S(k) holds, prove S(k+1).

EXAMPLE

Typical induction strategies include:

- Let e be an arbitrary edge in G, and let $G' = (V, E \setminus \{e\})$.
- Let v be an arbitrary vertex in G, and let G' be the subgraph of G obtained by deleting v and all its incident edges.

Intro

INDUCTION ON GRAPHS

EXERCISE

Use **induction** to prove that if a *simple connected* graph G has at least 3 vertices, and each vertex is of degree 2, then it is a *cycle*.

Proof

S(n) is { \forall connected graphs G, with $|V(G)| = n \ge 3$, where for all vertices $\forall v \in V : \delta(v) = 2$, G is a cycle}. n is a size of the vertex set |V(G)| of G. BASE CASE: S(3): If n = 3, G is a triangle, and so, a cycle. S(3) = TRUE. IND. STEP: We prove that $S(k) \Rightarrow S(k+1)$.