
Chinese Postman Problem: Find shortest (or lowest
weight) closed walk that visits all edges (note some
edges may be repeated).

Find optimal Eulerization:

1.) Find all odd degree vertices (note: ∃ an even
number of odd degree vertices).

2.) For each possible pairing (perfect matching) of
odd degree vertices, vi, vj ,

Find the shortest path or minimum weight
path, Pi,j , between each pair vi, vj .

3.) Take optimal pairing (perfect matching), and

duplicate each edge in the path Pi,j for
each i, j in the optimal pairing

Note this creates an Eulerian graph G′

4.) Find Eulerian circuit in the Eulerian graph G′.

5.) Apply to the original graph by repeating edges
that were duplicated to create the Eulerian graph G′.



Konigsberg bridge with made up distances.

Find shortest tour that visits each bridge and returns
to starting point.

I.e. Find lowest weight closed walk.
Thus find optimal Eulerization.

Note all vertices have odd degree.

pair: bc

pair: ad

a

c

b

d

52
2

2

2
2 1

pair: ab

pair: cd

a

c

b

d

52
2

2

2
2 1

pair: ac

pair: bd

a

c

b

d

52
2

2

2
2 1



Algorithm 4.2 step 2: Construct a weighted complete
graph on 2k vertices in which vertex vi is joined to
vertex vj by an edge with weight w(Pi,j):

Find an optimal perfect matching.

Defn: A subset, M , of edges of a gragh G is a mat-
ching if e, e′ ∈ M , then e, e′ are not incident to the
same vertex.

Defn: A matching is perfect if every vertex in G is
incident to some edge in M .

Some Applications of Matching:

Marriage.

Assignment of tasks to individuals where
one task is assigned to each individual.

Eulerizing a graph.



a

c

b

d

52
2

2

2
2 1

Find shortest tour that visits each bridge and returns
to starting point. I.e. Find lowest weight closed walk.

I.e. Find lowest weight closed walk.

If all vertices have even degree, then lowest weight
closed walk = Eulerian circuit.

If exactly 2 vertices, u,w, have odd degree, apply
Dijkstra’s algorithm to u (or w).

If 2k vertices have odd degree, form complete graph
on 2k vertices and use Dijkstra’s algorithm 2k − 1
times to determine edge weights. Then find optimal
pairing.


