From Coloring Maps to Avoiding Conflicts

 Nathaniel Dean, Robert M. Nehs, and Tong WuDepartment of Mathematical Sciences Texas Southern University

Thanks!

Frank

David

Andrew

- Funding Agencies
- Directors:

Lang Moore David Smith Frank Wattenberg

MAA

Map Coloring

Countries with a common boundary must have different colors.

Four Color Problem

1852 letter by Augustus de Morgan to Sir William Hamilton:
Four colors are required. Do 4 colors suffice?

1976: Appel and Haken proved it using an intricate case analysis on a computer.

Exercise:
 Draw a map that requires four colors.

3-Coloring Maps

Computer Science project by Malvika Rao (student), McGill U. http://www.cs.mcgill.ca/~rao/cs507/MapColoring.html

Welcome! Select a map or draw one.

The Dual is a Planar Graph.

Vertex Coloring

- A k-coloring is a labeling $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, \mathrm{k}\}$.
- A k-coloring is proper if $x y \in E(G)$ implies $f(x) \neq f(y)$.
- G is k-colorable if it has a proper k-coloring.
- The chromatic number $\chi(\mathrm{G})$ is the smallest k such that G is k -colorable.

Exercise:
 Prove $\chi($ Moser Graph $)=4$.

Party Problem

- People $P_{1}, P_{2}, \ldots, P_{n}$ meet for a party, but certain pairs are incompatible.
- Goal: Assign people to rooms so that no two people in the same room are incompatible.
- How many rooms are needed?

Solution to the Party Problem

Construct a conflict graph G.

- $V(G)=\left\{P_{1}, P_{2}, \ldots, P_{n}\right\}$.
- $P_{i}, P_{j} \in E(G)$ iff P_{i} and P_{j} are incompatible.
- The chromatic number $\chi(\mathrm{G})$ is the least number of rooms.

Scheduling Problem

- Five different groups of students $\{1,2,3\}$, $\{6,7\},\{1,7,9\},\{4,6,8\},\{2,3,4\}$ must take exams in the following engineering courses $\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}, \mathrm{~S}_{4}, \mathrm{~S}_{5}$, respectively.
- Goal: Schedule the exams using a minimum number of time periods.

Solution to the Scheduling Problem

Construct a conflict graph G.

- $\mathrm{V}(\mathrm{G})=\left\{\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}, \mathrm{~S}_{4}, \mathrm{~S}_{5}\right\}$.
- $S_{i,}, S_{j} \in E(G)$ iff $S_{i} \cap S_{j} \neq \varnothing$.
- The chromatic number $\chi(\mathrm{G})$ is the minimum number of time periods.

