From Coloring Maps to Avoiding Conflicts

Nathaniel Dean, Robert M. Nehs, and Tong Wu

Department of Mathematical Sciences Texas Southern University 3100 Cleburne Avenue Houston, TX 77004

Map Coloring Countries with a common boundary must have different colors.

Four Color Problem

1852 letter by Augustus de Morgan to Sir William Hamilton:

Four colors are required. Do 4 colors suffice?

1976: Appel and Haken proved it using an intricate case analysis on a computer.

Exercise:

Draw a map that requires four colors.

3-Coloring Maps

Computer Science project by Malvika Rao (student), McGill U. http://www.cs.mcgill.ca/~rao/cs507/MapColoring.html

3-Coloring Cubic Maps - by Malvika Rao		
Welcome! Select a map or draw one.	X: 375 Y: 207 Cubic Map 4 Cubic Map 4 Coraw vertices Validate Map Real Green Blue Validate Color Run Coloring Algorithm Reset	
	v	

The Dual is a Planar Graph.

Graph G=(V,E)consists of a set V of objects called vertices and a set E of unordered pairs of vertices.

Vertex Coloring

- A *k-coloring* is a labeling $f:V(G) \rightarrow \{1,2,...,k\}$.
- A k-coloring is *proper* if $xy \in E(G)$ implies $f(x) \neq f(y)$.
- G is *k-colorable* if it has a proper k-coloring.
- The *chromatic number* χ(G) is the smallest k such that G is k-colorable.

Exercise: $Prove \chi$ (Moser Graph) = 4.

Party Problem

- People P₁, P₂, ..., P_n meet for a party, but certain pairs are incompatible.
- Goal: Assign people to rooms so that no two people in the same room are incompatible.
- How many rooms are needed?

Solution to the Party Problem

Construct a conflict graph G.

- $V(G) = \{P_1, P_2, ..., P_n\}.$
- P_i, P_j∈E(G) iff P_i and P_j are incompatible.
- The chromatic number χ(G) is the least number of rooms.

Scheduling Problem

- Five different groups of students {1,2,3}, {6,7}, {1,7,9}, {4,6,8}, {2,3,4} must take exams in the following engineering courses S₁, S₂, S₃, S₄, S₅, respectively.
- Goal: Schedule the exams using a minimum number of time periods.

Solution to the Scheduling Problem

Future Work

- Allow student to enter any arbitrary map or (nonplanar) graph.
- Add a map library, and allow transferring between map and corresponding graph.
- Develop algorithms with student.
- Explore applications.

Thanks!

Frank

David

 Directors: *Lang Moore David Smith Frank Wattenberg*

Funding Agencies

Lang

Andrew