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Scale-variant topological information for characterizing the structure of complex networks
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The structure of real-world networks is usually difficult to characterize owing to the variation of topological
scales, the nondyadic complex interactions, and the fluctuations in the network. We aim to address these problems
by introducing a general framework using a method based on topological data analysis. By considering the
diffusion process at a single specified timescale in a network, we map the network nodes to a finite set of points
that contains the topological information of the network at a single scale. Subsequently, we study the shape of
these point sets over variable timescales that provide scale-variant topological information, to understand the
varying topological scales and the complex interactions in the network. We conduct experiments on synthetic
and real-world data to demonstrate the effectiveness of the proposed framework in identifying network models,
classifying real-world networks, and detecting transition points in time-evolving networks. Overall, our study
presents a unified analysis that can be applied to more complex network structures, as in the case of multilayer
and multiplex networks.

DOI: 10.1103/PhysRevE.100.032308

I. INTRODUCTION

Characterizing the structure of complex networks is the
most fundamental challenge in deciphering network dynam-
ics. The anatomy of a network is quite relevant to phenomena
occurring in networks, such as the spread of information,
epidemic disease, or robustness under attack. Moreover, it has
attracted considerable research interest given the numerous
applications including controlling and predicting patterns of
dynamics in networks [1–3], evaluating the structural and
functional similarities of biological networks [4–6], and de-
tecting transition points in time-evolving networks [7–9]. In
a technical sense, the structure of real-world networks is
inherently difficult to characterize, first, because these net-
works have complex patterns that can reflect various topo-
logical scales ranging from microscale (individual nodes) to
mesocale (community, cores, and peripheries) to macroscale
(the whole network) [10–12] [Fig. 1(a)]. For demonstrating
these patterns, the conventional statistical measures [13,14]
and methods [10,15–18] are limited when representing the
varying topological scales. Secondly, real-world networks
represent complex systems that have dyadic and nondyadic
interactions [19–21] [Fig. 1(b)]. The majority of the current
methods used for characterizing complex networks focus only
on the dyadic interactions, such as detecting the existence
of pairwise edges or paths connected by successive edges.
Thirdly, real-world networks often suffer from fluctuations
caused by external factors [22]. Consequently, the quest for
unifying the principles underlying the topology of networks
emerges only in simple, idealized models [23,24].
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Herein, we propose a general framework for characterizing
the structure of complex networks, mainly based on the topo-
logical data analysis of a diffusion process viewed at variable
timescales. We consider a diffusion process in which a random
walker moves randomly between nodes in continuous time at
the transition rate proportional to the edge weights. The inter-
action between the nodes via the diffusion process can reflect
the structure of the network at different topological scales.
For example, a microscale structure is revealed with a small
diffusion timescale τ . Increasing τ will increase the ranges
of interactions to reflect the mesoscale decomposition of the
network, until the macroscale structure is finally captured.
By considering the diffusion process at a single specified
timescale τ , we can map the network nodes to a finite set of
points known as a point cloud in a high dimensional space. In
the point cloud, a group of close points represents the unit
of interacted nodes in the diffusion process. The shape of
this point cloud contains the topological information of the
network at a single topological scale.

Based on a topological data analysis method that provides
insight into the “shape” of data [25], we build a geometrical
model that is primarily a collection of geometrical shapes to
reveal the underlying structure of the point cloud. In this geo-
metrical model, two points in the point cloud are connected
if their distance is less than or equal to a given threshold.
If the threshold is considerably small, only points appear
in the geometrical model, and no connections are created
between points. As the threshold is gradually increased, more
pairwise connections are created, and geometrical shapes as
line segments, triangles, tetrahedrons, and so on are added
to the geometrical model. In the case where the threshold
becomes considerably large, all pairs of points in the point
cloud will be connected, and only a giant overlapped geo-
metrical shape remains in the space. To obtain information
regarding the shape of the point cloud, we focus on the
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FIG. 1. Various topological scales and interactions between mul-
tiple elements in a complex network. (a) Complex networks can
be analyzed at various topological scales ranging from individual
nodes (microscale) to the whole network (macroscale). In between
the two scales, there is a mesoscale, where we can observe patterns
of collectives, cores, and peripheries. (b) Complex network is a
representation of a complex system having dyadic and nondyadic
interactions between its elements. The interactions can be repre-
sented as simplices such as segments (for dyadic interactions), filled
triangles, or filled tetrahedrons (for nondyadic interactions involving
three or four elements), and so on.

changes of topological structures, such as the merging of
connected components, and the emergence and disappearance
of loops in the geometrical model as the threshold is increased.
Therefore, at each timescale τ , we construct the topological
features to monitor the emergence and disappearance of the
topological structures. We can consider such features as a
representation for the network at a single topological scale
(τ scale). Further, we extend these features by considering
the timescale τ as a variable parameter instead of a single
fixed value. The extended features, referred to as scale-variant
topological features, can reflect the varying topological scales
in the complex network.

The scale-variant topological features are proven to be
robust under perturbation applied to the network, and thus
can serve as discriminative features for characterizing the
networks. We input these features in the kernel technique in
machine learning algorithms to apply to statistical-learning
tasks, such as classification and transition points detection.
We show that the proposed framework can characterize the
parameters that are used to generate the networks through
an analysis of several network models. Furthermore, we can
classify both synthetic and real-world networks with more
effective results when compared with other conventional ap-
proaches. We further apply the proposed framework to detect
the transition points with respect to the topological structure
in the time-evolving gene regulatory networks of Drosophila
melanogaster. Interestingly, these transition points agree well
with the transition points relative to the dynamics obtained
from the experimental results on the profiling.

II. METHOD

A. Scale-variant topological features

Let G be an undirected weighted network with N nodes,
v1, . . . , vN , and assume that there is a single random walker
moving randomly between the nodes in continuous time.
When the walker is located at vi, we assume the walker to
move to the neighboring node v j at a transition rate wi j/Wi,
where wi j � 0 represents the weight of the edge from vi to v j

(i, j ∈ {1, 2, . . . , N}) and Wi = ∑N
j=1 wi j . Herein, if there is

no edge between vi and v j , then wi j = 0. Now, let pG,k (τ |i)
denote the probability of a random walker on vk at time τ that
starts from vi. The probability distribution vector, pG (τ |i) =
[pG,1(τ |i), . . . , pG,N (τ |i)], is given based on the solution of
the Kolmogorov forward equation [26]:

d pG (τ |i)
dτ

= −pG (τ |i)Lrw
G . (1)

Here, Lrw
G is the random walk Laplacian whose components li j

(i, j ∈ {1, 2, . . . , N}) are given by

li j =
⎧⎨
⎩

1 if i = j and Wi �= 0,

−wi j/Wi if i �= j and vi is adjacent to v j,

0 otherwise.
(2)

The solution for Eq. (1) is pG (τ |i) = ui exp(−τLrw
G ), where

ui = [0, . . . , 0, 1, 0, . . . , 0] with its ith element being equal
to 1; the others are equal to zero (i ∈ {1, 2, . . . , N}).

At each timescale τ , we consider mapping χτ from the set
VG = {v1, v2, . . . , vN } of nodes in G to the Euclidean space
RN , such that

χτ : VG −→ RN

vi �−→ pG (τ |i) (i = 1, 2, . . . , N ). (3)

The mapped point pG (τ |i) of node vi represents the proba-
bility on all nodes at time τ of a random walker that starts
from vi. Therefore, pG (τ |i) can reflect the interaction between
vi and other nodes at τ scale, and characterize the structural
role of node vi with multiresolutions when τ varies. The shape
of the point cloud PG (τ ) = {pG (τ |1), . . . , pG (τ |N )} provides
valuable insights into the dyadic and nondyadic interactions
between nodes, and into the structural property of G at τ

scale. Moreover, the distance between two mapped points in
PG (τ ) is relatively small if there are many paths connecting
two original nodes in G. The nodes that belong to the same
community or cluster in the network tend to form a group of
close points in PG (τ ).

Information on the shape of the point cloud can be ob-
tained quantitatively using the method of persistent homol-
ogy from computational topology [25,27–29]. The idea is
to construct from PG (τ ) the ε-scale Vietoris-Rips complex
model VR(PG (τ ), ε), which is a set of simplices built with a
nonnegative threshold ε [30]. Here, every collection of n + 1
affinely independent points in PG (τ ) forms an n simplex in
VR(PG (τ ), ε) if the pairwise distance between the points is less
than or equal to ε. To build the Vietoris-Rips complex model,
we consider a union of balls of radius ε/2 centered at each
point in PG (τ ) (Fig. 2). Each simplex is built over a subset
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FIG. 2. Exemplary of Vietoris-Rips filtration constructed from a point cloud. A union of balls of radius ε/2 centered at each point is
considered. Topological structure changes are tracked, such as the merging of connected components or clusters, and the emergence and
disappearance of loops or circular holes present in the space with increasing ε from {0.0, 0.1, 0.2, 0.3, 0.4, 0.6}. For instance, the blue loop �1

appears at ε = 0.2 then disappears at ε = 0.4, whereas the red loop �2 appears at ε = 0.3 then disappears at ε = 0.6. For each ε, the number
of connected components and the number of loops are listed underneath.

of points if the balls intersect between every pair of points.
These simplices can represent the nondyadic interactions of
nodes at τ scale. In turn, the constructed complex VR(PG (τ ), ε)
provides information on the topological structure of PG (τ )
associated with ε. Now, starting with ε = 0, the complex
contains only the 0-simplices, i.e., the discrete points. As ε

increases, connections exist between the points, enabling us
to obtain a sequence of embedded complexes called filtration
with edges (1-simplices), and triangular faces (2-simplices)
are included into the complexes. Moreover, if ε becomes
considerably large, all the points get connected with each
other, whereby no useful information can be conveyed.

Persistent homology tracks the variation of topological
structures over the filtration. We refer to the topological
structures, i.e., “holes” in high-dimensional data, as connected
components, tunnels or loops (e.g., a circle of torus), cavities
or voids (e.g., the space enclosed by a sphere), and so on.
In persistent homology, a hole is identified via the cycle
that surrounds it. In a given manifold, a cycle is a closed
submanifold, and a boundary is a cycle that is also the
boundary of a submanifold. Holes correspond to cycles that
are not themselves boundaries. For instance, a disk is a two-
dimensional surface with a one-dimensional boundary (i.e., a
circle). If we puncture the disk, we obtain a one-dimensional
hole that is enclosed by the circle, which is no longer a
boundary [Figs. 3(b) and 3(c)]. Similarly, a filled ball is a
three-dimensional object with a two-dimensional boundary
(i.e., a surface sphere). If we empty the inside of the ball,
we obtain a two-dimensional hole that is enclosed by the
surface sphere, which is no longer a boundary [Figs. 3(d)
and 3(e)]. Based on these observations, we can describe and
classify holes in the simplicial complex according to the cy-
cles that enclose holes. Given a simplicial complex, we define
an n-chain as a collection of n-simplices in the complex.
Therefore, in a simplicial complex, we can define an n-cycle
as a closed n-chain and an n-boundary as an n-cycle, which
is also the boundary of an (n + 1)-chain. Here, a 0-cycle is
a connected component, a 1-cycle is a closed loop, and a
2-cycle is a shell. For instance, in Fig. 3(g), all loops A →
B → D → A, B → C → D → B, and A → B → C → D →
A are 1-cycles because they are the closed collection of edges
(1-simplices). Furthermore, the loop A → B → D → A is a
1-boundary because it bounds a triangular face (2-simplex).
An n-dimensional hole corresponds to an n-cycle that is not a
boundary of any (n + 1)-chain in the simplicial complex. For

instance, as illustrated in Fig. 3(g), the loops B → C → D →
B and A → B → C → D → A characterize one-dimensional
holes because these loops are 1-cycles but are themselves

FIG. 3. (a)–(f) Sample manifolds with the number of zero-, one-,
and two-dimensional holes listed underneath. (a) The connected
component is a zero-dimensional hole. (b),(c) A one-dimensional
hole is obtained by puncturing a disk. (d),(e) A two-dimensional hole
is obtained by emptying the inside of a ball. (f) Two one-dimensional
holes are illustrated as two circles in a torus. (g) Example of a
simplicial complex containing 19 points (0-simplices), 24 edges
(1-simplices), eight triangular faces (2-simplices), and one filled
tetrahedron (3-simplices). There are two one-dimensional holes �1

and �2 in the complex. In this example, all loops B → C → D → B,
A → B → C → D → A, B → E → C → D → B, and A → B →
E → C → D → A are 1-cycles because they are closed 1-chains,
that is, the closed collection of edges (1-simplices). Each cycle
is not a boundary of any 2-chain (collection of triangular faces);
thus it characterizes a one-dimensional hole. Note that these cycles
characterize the same hole, �1, because the difference between the
two cycles is the boundary of a 2-chain.

032308-3
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FIG. 4. (a) Undirected network comprising four clusters with more connections within intraclusters than between interclusters. (b) For
each τ , the nodes are mapped onto a point cloud such that the distances of the mapped points of the nodes in the same clusters are smaller than
those between the nodes belonging to different clusters. These distances decrease as τ increases with τ1 < τ2 < τ3. (c) The topological features
at each τ characterize the shape of the point cloud. These features are displayed as a two-dimensional persistence diagram at each τ . (d) The
scale-variant topological features, i.e., the three-dimensional persistence diagram, are obtained by integrating two-dimensional diagrams at
varying τ . The birth-scale and death-scale axes of the diagrams are represented at the logarithmic scale.

not 1-boundaries. Moreover, two n-cycles characterize the
same hole when together they bound an (n + 1)-chain (i.e.,
their difference is an n-boundary). Intuitively, the connected
components can be considered as zero-dimensional holes, the
loops and tunnels as one-dimensional holes, and the cavities
and voids as two-dimensional holes.

We consider the emergence and disappearance of holes in
the Vietoris-Rips filtration of PG (τ ) as topological features for
the complex network G at τ scale. Such features can be ob-
served using multiset points in a two-dimensional persistence
diagram, D(2)

(l ),τ (G), which is calculated for l-dimensional
holes. In this diagram, each point (b, d ) denotes a hole that
appears at the birth scale, ε = b, and disappears at the death
scale, ε = d (see Appendix A). Observing the above-defined
features, i.e., the two-dimensional persistence diagrams with
varying τ , can provide insights into the variation of topolog-
ical structures, thereby reflecting the variation of topological
scales in the network. For instance, the persistence diagrams
of zero-dimensional and one-dimensional holes contain in-
formation on clusters, connected components, or loops in
the point cloud PG (τ ), and thus lead to an understanding
of the formation of communities and loops in the network
at the τ scale. We construct scale-variant topological features
by regarding τ as a variable parameter rather than as a single
fixed value.

In Fig. 4(a), we consider an undirected network that com-
prises four clusters with more intracluster connections than
intercluster ones. Pairwise distances of the mapped points of
the nodes belonging to the same clusters are smaller than the
distances between the nodes belonging to different clusters.
These distances decrease as values of τ increase [Fig. 4(b)].
In the point cloud, the hole patterns appear with different
sizes in different groups of points as τ varies. We obtain
the scale-variant topological features that reflect the variation
of topological scales by considering the two-dimensional
persistence diagrams with the varying τ . Consider τ in a
set T = {τ1, τ2, . . . , τK }, where 0 < τ1 < τ2 < · · · < τK are

predefined or sampled values from the continuous domain
of timescales. The scale-variant topological features, i.e., the
three-dimensional persistence diagram of l-dimensional holes
for network G, are defined by D(3)

(l ) (G) = {(b, d, τ ) | (b, d ) ∈
D(2)

(l ),τ (G), τ ∈ T } [Fig. 4(d)].

B. Robustness of scale-variant topological features

We show that the scale-variant topological features are
robust with respect to some perturbations of the network. To
describe this robustness, we use the bottleneck distance, d (3)

B,ξ ,
a metric structure introduced in Ref. [31] for comparing three-
dimensional persistence diagrams (see Appendix B). Herein,
ξ is a positive rescaling coefficient introduced to adjust the
scale difference between the pointwise distance and time. We
consider two undirected networks G and H with the same
number of nodes. Based on Refs. [32,33], we can prove that
the upper limit of the bottleneck distance between D(3)

(l ) (G) and

D(3)
(l ) (H) is governed by the matrix 2-norm of the difference

between Lrw
G and Lrw

H (see Appendix B):

d (3)
B,ξ

[
D(3)

(l ) (G), D(3)
(l ) (H)

]
� 2τK

∥∥Lrw
G − Lrw

H
∥∥

2. (4)

Herein, ‖A‖2 denotes the matrix 2-norm of matrix A. The in-
equality of Eq. (4) indicates that our scale-variant topological
features are robust with respect to the perturbations applied to
the random walk Laplacian matrix. Therefore, these features
can be used as discriminative features for characterizing net-
works.

C. Kernel method for scale-variant topological features

In the statistical-learning tasks, many learning algorithms
require an inner product between the data in the vector form.
Because the space of three-dimensional persistence diagrams
is not a vector space, we deem it not straightforward to
use the scale-variant topological features in the statistical-
learning tasks. This problem can be mitigated through the
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use of a feature map � from the positive-definite kernel,
which maps the scale-variant topological features to a space
called kernel-mapped feature space Hb, where we can de-
fine the inner product [31]. In general, choosing the explicit
form of mapping a persistence diagram E to �E in the
kernel-mapped feature space is not discernible. Nonetheless,
we can use a kernel function to compute the inner product
in the kernel-mapped feature space, leaving the mapping
function and the kernel-mapped feature space completely
implicit.

Given a positive bandwidth σ and a positive rescaling
coefficient ξ introduced to adjust the scale difference between
the pointwise distance and time (see Appendix C), based on
Refs. [31,34], we define the kernel Kσ,ξ between two three-
dimensional persistence diagrams, E and F , as

Kσ,ξ (E , F ) = 1

σ
√

2π

∑
q(1)∈E
q(2)∈F

(
e− d2

ξ
(q(1),q(2) )

2σ2 − e− d2
ξ

(q(1) ,q̄(2) )

2σ2

)
, (5)

where d2
ξ (q(1), q(2) ) = |b1 − b2|2 + |d1 − d2|2 + ξ 2|τ1 − τ2|2,

d2
ξ (q(1), q̄(2) ) = |b1 − d2|2 + |d1 − b2|2 + ξ 2|τ1 − τ2|2, with

q(1) = (b1, d1, τ1) and q(2) = (b2, d2, τ2), q̄(2) = (d2, b2, τ2).
In our experiments, we use the normalized version of the
kernel, which is calculated as

Kσ,ξ (E , F ) ← Kσ,ξ (E , F )/
√
Kσ,ξ (E , E )Kσ,ξ (F, F ). (6)

Because Eq. (5) and Eq. (6) define the positive-definite ker-
nels in the set of three-dimensional persistence diagrams
[31], according to Moore-Aronszajn’s theorem [35], there
exists a mapping function � such that the inner product
〈�E ,�F 〉Hb between �E and �F in the kernel-mapped feature
space Hb is Kσ,ξ (E , F ). Therefore, we can use the explicit
form of inner product 〈�E ,�F 〉Hb in the statistical-learning
tasks.

Furthermore, we can use the above-defined kernel to es-
timate the transition points with respect to the topological
structure in the series of networks G1,G2, . . . ,GM . Consider
a collection of diagrams D(l ) = {D(3)

(l ),1, D(3)
(l ),2, . . . , D(3)

(l ),M},
where D(3)

(l ),i is the three-dimensional persistence diagram of l-
dimensional holes for network Gi (i = 1, 2, . . . , M ). Here, we
define the transition with respect to the topological structure
in G1,G2, . . . ,GM as they abruptly change at given unknown
instants (change points) in D(l ). We use the kernel change-
point detection method [36] to solve the change-point regres-
sion problem with �D(3)

(l ),1
,�D(3)

(l ),2
, . . . , �D(3)

(l ),M
. Given an index

s (1 < s � M ), we calculate the kernel Fisher discriminant
ratio κM,s(D(l ) ), which is a statistical quantity to measure the
dissimilarity between two classes assumptively defined by
two sets of diagrams having index before and from s (see
Appendix D). Here, the index s achieving the maximum of
κM,s(D(l ) ) corresponds to the estimated transition point.

III. RESULTS

A. Understanding variations of the parameters
of network models

We now investigate how the scale-variant topological fea-
tures can reflect variations of the parameters of network

models. We generate networks using Girvan-Newman (GN)
[37], Lancichinetti-Fortunato-Radicchi (LFR) [38,39], Watts-
Strogatz (WS) [40], Erdős-Rényi (ER) [41], Lancichinetti-
Fortunato-Radicchi with hierarchical structure (LFR-H) [17],
and Sales-Pardo (SP) [16] models. We focus on the model
parameters that represent the topological scale of these net-
works, such as the ratio r between the probability of inter-
(pout) and intracommunity links (pin) (GN), mixing rate μ

(LFR), rewiring probability β (WS), pair-link probability plink

(ER), mixing rate μmacro for macrocommunities (LFR–H), and
ρ, which estimates the separations between topological scales
in the SP model. The model parameters are varied as r =
pout/pin = 0.01, 0.02, . . . , 1.0, μ = 0.01, 0.02, . . . , 1.0, β =
0.00, 0.01, . . . , 1.0, plink = 0.020, 0.021, . . . , 0.1, μmacro =
0.01, 0.02, . . . , 0.2, and ρ = 0.05, 0.10, . . . , 2.0. We gener-
ate 10 network realizations for each of the models GN, LFR,
WS, ER, and SP, and 20 network realizations for the LFR-H
model at each value of the corresponding model parameter.
There are 128 nodes in the GN, LFR, WS, and ER networks,
300 nodes in each LFR-H network, and 640 nodes in each SP
network.

We compute three-dimensional persistence diagrams for
one-dimensional holes with τ1 = 1, τ2 = 2, . . . , τ100 = 100,
and then calculate the kernel defined in Eq. (5) for the col-
lection of generated networks in each model. Figure 5 shows
the principal component projections from the kernel-mapped
feature space of each model, at which the points with different
colors represent the networks generated from different values
of the model parameters. In WS, ER, LFR-H, and SP models,
the scale-variant topological features reflect a variation of the
parameters associated with the topological scales, mainly that
the points located at different positions have different colors
[Figs. 5(c)–5(f)]. In GN and LFR models, there are variations
in the topological scales of the network as r and μ vary
from 0 (four separate groups) to 1 (a purely random graph).
Using the kernel Fisher discriminant ratio calculated for the
series of persistence diagrams, we obtain the transition with
respect to the topological structure at r = 0.12 and μ = 0.26
for the series of networks obtained at increasing r and μ

(Fig. 6). These values correspond to the boundaries between
the identifiable phases, where parameters can be identified
from the kernel-mapped feature space and the nonidentifiable
phases [Figs. 5(a) and 5(b)].

B. Identification of network models

Here we show that the scale-variant topological features
can classify the networks generated from different models,
even if they have similar global statistical measures. We study
the configuration model in Ref. [42], which generates random
networks (known as configuration networks) having the same
sequences of node degrees as a given network. The labels
of the networks generated from GN, LFR, and WS models
are denoted by GN-org, LFR-org, and WS-org, respectively,
while their corresponding configuration network labels are de-
noted by GN-conf, LFR-conf, and WS-conf. We compute the
three-dimensional persistence diagrams for one-dimensional
holes of these networks with timescale values τ1 = 1, τ2 =
2, . . . , τ100 = 100. Accordingly, we calculate the kernel for
these diagrams, then perform three-dimensional projections
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FIG. 5. Principal components projection from the kernel-mapped feature space of the scale-variant topological features in each net-
work model. Points with different colors represent networks generated from different values of the model parameters. Networks are
generated from (a) Girvan-Newman (GN), (b) Lancichinetti-Fortunato-Radicchi (LFR), (c) Watts-Strogatz (WS), (d) Erdős-Rényi (ER),
(e) Lancichinetti-Fortunato-Radicchi hiearchical (LFR-H), and (f) Sales-Pardo (SP) models. Parameters for these models vary as follows:
r = pout/pin = 0.01, 0.02, . . . , 1.0 (GN), μ = 0.01, 0.02, . . . , 1.0 (LFR), β = 0.00, 0.01, . . . , 1.0 (WS), plink = 0.020, 0.021, . . . , 0.1 (ER),
μmacro = 0.01, 0.02, . . . , 0.2 (LFR–H), and ρ = 0.05, 0.10, . . . , 2.0 (SP).

FIG. 6. Kernel Fisher discriminant ratio κ estimated for the
series of (a) Girvan-Newman networks and (b) Lancichinetti-
Fortunato-Radicchi networks. The transition point is detected with
respect to the topological structure of networks from the series
of persistence diagrams for one-dimensional holes obtained when
r = pout/pin is increased as r1 = 0.01, r2 = 0.02, . . . , r100 = 1.0 (for
Girvan-Newman networks) and μ is increased as μ1 = 0.01, μ2 =
0.02, . . . , μ100 = 1.0 (for Lancichinetti-Fortunato-Radicchi net-
works). The maximum value of κ is marked with the orange point
of the dashed line. The transition point is the value of the parameter
that achieves the maximum value of κ . The transition points are
obtained as rc = 0.12 (for Girvan-Newman networks) and μc = 0.26
(for Lancichinetti-Fortunato-Radicchi networks).

of the principal components from the kernel-mapped feature
space [Fig. 7(a)]. Here, points with different colors represent
networks generated from different models. In Fig. 7(a), the
points appear to be distinguishable by their colors; thus we
can conclude that the scale-variant topological features can
characterize the differences with respect to the topological
structure between networks, and even between configuration
networks generated from different models.

While the node degree distribution in a configuration
network is the same as the given network, the topological
correlations between the nodes are destroyed. Therefore, we
investigate conventional higher-order features of the network,
such as the degree assortativity coefficient, the average clus-
tering coefficient, and the maximum modularity obtained via
Louvain heuristic [37,43]. Figure 7(b) highlights the variation
of these features in our generated networks. Specifically in
Fig. 7(b), the points with corresponding labels GN-org, LFR-
org, and WS-org appear to be distinguishable from others;
thus it becomes easy to distinguish between networks gen-
erated from different models and between a given network
with its corresponding configuration network. However, if
we look at the variation of these features for configuration
networks [Fig. 7(c)], we note that the conventional higher-
order features of the network cannot capture the apparent
differences in topological structure between the configuration
networks, even when their corresponding original networks
are generated from different mechanics models. In contrast
with this observation and as highlighted in Fig. 7(a), the scale-
variant topological features can provide a better representation
of the topological structure of networks.
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FIG. 7. Networks from Girvan-Newman, Lancichinetti-Fortunato-Radicchi, and Watts-Strogatz models are generated with labels denoted
by GN-org, LFR-org, and WS-org, respectively; their corresponding configuration network labels are denoted by GN-conf, LFR-conf, and
WS-conf. (a) The kernel principal components projection of the scale-variant topological features for these networks. (b), (c) Variation of
high-order features, i.e., degree assortativity coefficient, maximum modularity, and average clustering coefficient for (b) all generated networks
and (c) configuration networks. The different colors represent the networks generated from different models.

Accordingly, we quantify to what extent the scale-variant
topological features identify the networks generated from
different models. We employ the scale-variant method, which
uses the scale-variant topological features to classify networks
into six labels, namely, GN-org, LFR-org, WS-org, GN-conf,
LFR-conf, and WS-conf. We randomly split 10 networks
generated at each value of the model parameters into two,
i.e., five networks for training and five for testing, and ap-
ply the support vector machine [44] for classification in the
kernel-mapped feature space. Figure 8(a) depicts the average
normalized confusion matrix over 100 random splits, where
the row and column labels are the predicted and true labels,
respectively. Figure 8(a) shows a reasonably high accuracy
for identifying the networks generated from different models
with the following labels: GN-org (99.2%), LFR-org (99.2%),

FIG. 8. Classification of networks generated from Girvan-
Newman, Lancichinetti-Fortunato-Radicchi, and Watts-Strogatz
models, with labels denoted by GN-org, LFR-org, and WS-org,
respectively; their corresponding configuration network labels are
denoted by GN-conf, LFR-conf, and WS-conf. (a) Average normal-
ized confusion matrix of the scale-variant method over 100 random
train-test splits of the data. The 10 networks generated at each value
of the model parameters are split into two, with five networks for
training and the other five for testing. (b) Average accuracies (%) of
the classification methods over 100 random train-test splits at each
proportion of the training data (bold lines). The shaded areas indicate
the confidence intervals of one standard deviation calculated using
the same ensemble of runs.

WS-org (99.4%), GN-conf (94.8%), LFR-conf (99.4%), and
WS-conf (96.6%). This result demonstrates that the scale-
variant topological features can reflect well on the behaviors
of these network models.

To highlight the benefits of the scale-variant method, we
compare it with the other conventional methods using com-
mon network measures [13,45–48], well-recognized graph
kernels [49], and topological features calculated at an average
fixed topological scale. We describe the common network
measures in Appendix E as well as the graph kernels that
are based on random walks (KStepRW, GeometricRW, Expo-
nentialRW) [50,51], paths (ShortestPath) [52], limited-sized
subgraphs (Graphlet) [53], and subtree patterns (Weisfeiler-
Lehman [54]) in Appendix F. Moreover, we consider two
variations of topological features evaluated at an average fixed
topological scale to show the advantages of using variable
timescales. Also, instead of using a particular timescale, we
use the scale-average and the scale-norm-average methods
to preserve the geometrical persistence of the point cloud.
The former uses the topological features extracted from the
average distance matrix �avg = (1/K )

∑K
i=1 �τi , whereas the

latter uses the features from the average normalized distance
matrix �̃avg = (1/K )

∑K
i=1 �̃τi [26]. Herein, �τi denotes the

distance matrix of pairwise Euclidean distances between
points in PG (τi), whereas �̃τi is obtained by dividing �τi by
its maximum element. We randomly split the 10 networks
generated at each value of the model parameters into pro-
portions for training and for testing, and employ the support
vector machine as the classifier to both the common network
measures and the kernel-mapped feature space. We compute
the average classification accuracy over 100 random splits at
different proportions of the training data. Figure 8(b) depicts
the performance of the methods with accuracies greater than
70%, mainly illustrating that the scale-variant method out-
performs the other methods in terms of classification accu-
racy. Moreover, the scale-variant method is shown to achieve
approximately 97% of accuracy, even with a small size of
the training data set, e.g., only 10% of all the data, whereas
the other methods yielded accuracies of at most 84%. These
results validate the effectiveness and the reliability of our
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TABLE I. Summary statistics of the real-world network data sets.

Type of Number of Number of Number of networks Avg. number Avg. number
Data set networks networks classes in each class of nodes of edges

MUTAG Chemoinformatics 188 2 (63, 125) 17.93 19.79
BZR Chemoinformatics 405 2 (319, 86) 35.75 38.36
COX2 Chemoinformatics 467 2 (365, 102) 41.22 43.45
DHFR Chemoinformatics 756 2 (295, 461) 42.43 44.54
FRANKENSTEIN Chemoinformatics 4337 2 (2401, 1936) 16.90 17.88
NCI1 Chemoinformatics 4110 2 (2053, 2057) 29.87 32.30
NCI109 Chemoinformatics 4127 2 (2048, 2079) 29.68 32.13
PROTEINS Bioinformatics 1113 2 (663, 450) 39.06 72.82
IMDB-BINARY Social 1000 2 (500, 500) 19.77 96.53
IMDB-MULTI Social 1500 3 (500, 500, 500) 13.00 65.94
COLLAB Social 5000 3 (2600, 775, 1625) 74.49 2457.78
REDDIT-BINARY Social 2000 2 (1000, 1000) 429.63 497.75
REDDIT-MULTI-5K Social 4999 5 (1000, 1000, 1000, 1000, 999) 508.52 594.87

scale-variant method in capturing the differences between
network structures. The source code used in our experiments
is publicly available on GitHub [55].

C. Classification of the real-world network data

Next, we apply the scale-variant topological features to
the classification of chemoinformatics network data sets
(MUTAG, BZR, COX2, DHFR, FRANKENSTEIN, NCI1,
NCI109), bioinformatics data set (PROTEIN), and large real-
world social network data sets, such as movie collabora-
tion networks (IMDB-BINARY, IMDB-MULTI), scientific
collaboration networks (COLLAB), and networks obtained
from online discussion threads on Reddit (REDDIT-BINARY,
REDDIT-MULTI-5K) [56–63]. The aggregate statistics for
these data sets is provided in Table I. We compute three-
dimensional persistence diagrams with τ1 = 1, . . . , τ50 = 50,
and use the multiple kernel learning method [64] to learn
the linear combination of the normalized kernels for zero-
dimensional and one-dimensional holes. Subsequently, we
compare our scale-variant method with methods employ-
ing the common network measures and the scale-average
and scale-norm-average methods. Likewise, we compare the
scale-variant method with many state-of-the-art algorithms in
classifying graphs and networks as follows: (i) random walk
kernels based on matching walks in two graphs (KStepRW,
GeometricRW, ExponentialRW) [50,51], (ii) the shortest path
kernel (ShortestPath) [52], (iii) the graphlet count kernel
(Graphlet) [53], (iv) the Weisfeiler-Lehman subtree kernel
(Weisfeiler-Lehman) [54], (v) the deep graph kernel (DGK)
[62], (vi) the PATCHY-SAN convolutional neural network
(PSCN) [65], and (vii) the graph kernel based on return
probabilities of random walks (RetGK) [66]. Here, in order
to make a fair comparison with these methods, as presented in
the literature [66], we apply the support vector machine [44]
as the classifier in the kernel-mapped feature space. Moreover,
we perform 10-fold cross validations, where a single 10-fold
is created by randomly shuffling the data set, and then splitting
it into 10 different parts (folds) of equal size. In every single
10-fold, we use nine folds for training and one for testing and
averaging of the classification accuracy of the test set obtained

throughout the folds. To reduce the variance of the accuracy
due to the splitting of data, we repeat the whole process of
cross validation for 10 times, and then report the average and
standard deviation of the classification accuracies.

The social network data sets contain networks that do
not have information, such as labels and attributes of nodes.
For movie collaboration data sets (IMDB-BINARY, IMDB-
MULTI), collaboration ego networks are generated for each
actor (actress). In each network, two nodes representing the
actors or actresses are connected when they appear in the
same movie. The task is to identify whether a given ego
network of an actor (actress) belongs to one of the predefined
movie genres. For the scientific collaboration data set (COL-
LAB), collaboration ego networks are generated for different
researchers, with the objective of determining whether the
collaboration network of a researcher belongs to one of the
research fields such as high energy physics, condensed matter
physics, or astrophysics. For Reddit data sets, each network
is generated from an online discussion thread where nodes
correspond to users and edges correspond to the responses
between users. Here, the task is to identify whether a given
network belongs to a question and answer–based community
or a discussion-based community (REDDIT-BINARY), or one
of five predefined subreddits (REDDIT-MULTI-5K). Table II
presents the average accuracies along with their standard de-
viations over ten 10-folds. The results for Weisfeiler-Lehman
kernel, DGK kernel, PSCN, and RetGK kernel are taken from
Ref. [66]. Specifically in Table II, the best and the second-
best average accuracy scores for each social network data set
are colored dark pink and light pink, respectively. For the
social network data sets, the scale-variant method either is
comparable or outperforms the state-of-the-art classification
methods.

For the chemoinformatics network data sets, we predict
the function classes of chemical compounds in chemoinfor-
matics. Here, molecules are represented as small networks
with nodes as atoms and edges as covalent bonds. For the
bioinformatics data set (PROTEINS), proteins are represented
as networks, where the nodes are secondary structure elements
and the edges represent the neighborhood within the three-
dimensional (3D) structure or along the amino acid chain.
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TABLE II. Average and standard deviation (mean±s.d.) of the classification accuracy (%) for social network data sets IMDB-BINARY,
IMDB-MULTI, COLLAB, REDDIT-BINARY, and REDDIT-MULTI-5K. These social network data sets contain networks that do not have
information such as labels and attributes of nodes. In each data set, the best and the second-best scores are colored in dark pink and light pink,
respectively. The notation (∗) indicates that the kernel computation with the implementation in [49] is not completed after 72 h.

Method IMDB-BINARY IMDB-MULTI COLLAB REDDIT-BINARY REDDIT-MULTI-5K

Scale-variant 74.2 ± 0.9 49.9 ± 0.3 79.6 ± 0.3 87.8 ± 0.3 53.1 ± 0.2
Scale-average 67.7 ± 0.8 44.9 ± 0.4 71.4 ± 0.1 79.8 ± 0.3 51.5 ± 0.2
Scale-norm-average 70.2 ± 0.7 44.9 ± 0.4 62.6 ± 0.1 73.9 ± 0.2 48.7 ± 0.3
CommonMeasures 72.0 ± 0.2 44.9 ± 0.3 75.2 ± 0.1 85.7 ± 0.3 56.6 ± 0.2
KStepRW 60.0 ± 0.8 43.8 ± 0.7 (∗) (∗) (∗)
GeometricRW 67.0 ± 0.8 45.2 ± 0.4 (∗) (∗) (∗)
ExponentialRW 65.2 ± 1.1 43.1 ± 0.4 (∗) (∗) (∗)
ShortestPath 58.2 ± 1.0 42.0 ± 0.6 58.5 ± 0.2 81.9 ± 0.1 49.0 ± 0.1
Graphlet 65.9 ± 1.0 43.9 ± 0.4 72.8 ± 0.3 77.3 ± 0.2 41.0 ± 0.2
Weisfeiler-Lehman 70.8 ± 0.5 49.8 ± 0.5 74.8 ± 0.2 68.2 ± 0.2 51.2 ± 0.3
DGK 67.0 ± 0.6 44.6 ± 0.5 73.1 ± 0.3 78.0 ± 0.4 41.3 ± 0.2
PSCN 71.0 ± 2.3 45.2 ± 2.8 72.6 ± 2.2 86.3 ± 1.6 49.1 ± 0.7
RetGK 71.9 ± 1.0 47.7 ± 0.3 81.0 ± 0.3 92.6 ± 0.3 56.1 ± 0.5

We aim to classify the function class membership of the
protein sequences into enzymes and nonenzymes. Note that
these chemoinformatics and bioinformatics network data sets
contain information on the labels and attributes of the nodes,
which is leveraged in DGK, PSCN, and RetGK methods. For
a fair comparison of characterizing the structure of networks,
we present in Table III the average accuracies and standard
deviations of the methods that only use the connectivity be-
tween nodes. In the table, the best and the second-best average
accuracy scores for each data set are colored dark pink and
light pink, respectively. Here, on average, the scale-variant
method outperforms all the other methods, and offers the
best results for six of the eight data sets and the second-
best result for two more. Further, the classification accuracies
of the scale-variant method on MUTAG, FRANKENSTEIN,
NICI1, and NCI109 data sets are at least two percentage points
higher than those of the best baseline algorithms. These results
suggest that the scale-variant method can be considered as an
effective approach in classifying real-world network data.

D. Detection of transition points in the time-evolving gene
regulatory network

We apply the scale-variant topological features to de-
tect transition points between the developmental stages of
Drosophila melanogaster in the time-evolving gene regulatory
networks. Particularly, we use a genome-wide microarray
profiling, which shows the expression patterns of 4028 genes
simultaneously measured during the developmental stages of
Drosophila melanogaster [67]. Herein, 66 time points are
chosen from the full developmental cycle: embryonic stage
(1–30), larval stage (31–40), pupal stage (41–58), and adult-
hood stage (59–66) [68]. We use a kernel reweighted logistic
regression method [69] to reconstruct the time-evolving net-
works for 588 genes, which are known to be related to the
developmental process based on their gene ontologies. There-
fore, the networks are reconstructed via logistic regression
using only binary information, i.e., activation or nonactivation
of gene expression data. For the likelihood being maximized
for network inference, a kernel weight function is employed to

TABLE III. Average and standard deviation (mean±s.d.) of the classification accuracy (%) for chemoinformatics and bioinformatics data
sets MUTAG, BZR, COX2, DHFR, FRANKENSTEIN, PROTEINS, NCI1, and NCI109. Presented is only a comparison of the methods using
the connectivity between nodes. In each data set, the best and the second-best scores are colored in dark pink and light pink, respectively.

Method MUTAG BZR COX2 DHFR FRANKEN-STEIN PROTEINS NCI1 NCI109

Scale-variant 88.2±1.0 85.9±0.9 78.4±0.4 78.8±0.7 69.0±0.2 72.6±0.4 71.3±0.4 69.8±0.2
Scale-average 83.0±1.3 78.9±0.4 78.2±0.0 66.9±0.5 61.3±0.2 70.8±0.2 66.5±0.2 65.8±0.2
Scale-norm-average 84.6±0.9 81.7±0.2 78.2±0.0 61.0±0.0 60.2±0.1 71.7±0.4 65.2±0.1 65.7±0.1
CommonMeasures 84.9±0.3 82.8±0.3 78.2±0.0 71.1±0.6 62.0±0.2 75.3±0.3 67.8±0.3 65.4±0.1
KStepRW 81.8±1.3 86.5±0.5 78.0±0.1 73.3±0.4 65.4±0.2 71.8±0.1 51.7±0.7 50.4±0.0
GeometricRW 82.9±0.5 79.2±0.4 78.2±0.0 71.4±1.9 55.4±0.1 72.2±0.1 62.6±0.0 63.2±0.0
ExponentialRW 83.0±0.5 79.5±0.5 78.2±0.0 74.6±0.3 55.4±0.1 72.2±0.1 62.7±0.1 63.2±0.1
ShortestPath 81.8±0.9 85.6±0.6 78.1±0.1 73.2±0.5 63.8±0.1 72.0±0.3 64.2±0.1 61.1±2.0
Graphlet 83.0±0.3 78.8±0.0 78.2±0.0 61.0±0.0 55.4±0.0 70.6±0.1 62.4±0.2 62.1±0.1
Weisfeiler-Lehman 83.8±0.8 84.0±1.2 78.3±0.2 77.2±0.6 62.3±1.2 71.3±0.5 63.2±0.1 63.6±0.1
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FIG. 9. Three-dimensional persistence diagrams of
one-dimensional holes for the Drosophila melanogaster gene
regulatory networks spanning from (a) t = 29 to t = 32, (b) t = 39
to t = 42, and (c) t = 58 to t = 61. The birth-scale and the
death-scale axes of the diagrams are represented at the logarithmic
scale.

obtain the dynamic network structures with smooth transition
at adjacent time points [69].

We use the scale-variant topological features to detect the
transition points with respect to the topological structure of
the constructed time-evolving networks. Consequently, the
detected transition points agree with the transition points in
the dynamics of Drosophila melanogaster. Here, the change
points between the developmental stages of Drosophila
melanogaster chosen in the experiment are referred to as
the transition points in the dynamics: t1 = 31 between
the embryonic stage and the larval stage, t2 = 41 between
the larval stage and the pupal stage, and t3 = 59 between the
pupal stage and the adulthood stage. For the network of each
time point, three-dimensional persistence diagrams are com-
puted for one-dimensional holes with τ1 = 1, . . . , τ100 = 100.
Figure 9 shows the examples of the diagrams for networks
spanning from (a) t = 29 to t = 32, (b) t = 39 to t = 42,
and (c) t = 58 to t = 61. Here, note the transformation of
the patterns in scale-variant topological features along with
time points. Such pattern transformation corresponds with the
transformation in the topological structure of time-evolving
reconstructed networks. Moreover, we quantify the transition
points with respect to the topological structure by observing

the sliding windows spanning two different developmental
stages of Drosophila melanogaster. In each sliding window,
we compute the kernel Fisher discriminant ratio [36] for each
time point from the three-dimensional persistence diagrams
of the networks (see Appendix D). The time point of the
maximum ratio can be identified as the transition time point
tc in each window (Fig. 10). From the embryonic stage to
the larval stage, we obtain the transition time points in the
topological structure as tc = 28 and tc = 31, relatively close
to the experimentally known transition time point t1 = 31.
Furthermore, from the larval stage to the pupal stage, and from
the pupal stage to the adulthood stage, we obtain the transition
time points in the topological structure as tc = 41 and tc =
59, respectively. These points agree with the experimentally
known transition time points t2 = 41 and t3 = 59.

E. Considerations on the maximum value
of the diffusion timescale

We investigate the maximum timescale τmax to examine
the length of the diffusion process that must be explored.
Note that the timescale functions as a resolution parameter to
unravel the multiscale and hierarchical structure of a network.
A small time scale restricts random walkers in local inter-
actions, which produces many communities in the network.
In contrast, a large time scale leads to a substantial contri-
bution of long walks and therefore yields a small number
of communities because random walkers tend to remain in
these communities for a long time. This resolution problem
has been addressed in Refs. [70,71], in which the relevance
of partitions as community structures is characterized over
timescales. Instead of characterizing the network structure
at a fixed resolution, the scale-variant topological features
obtained with a sufficiently large τmax can contain information
about the network at multiple resolutions.

Here, we study the method for determining τmax through
the spectral decomposition of the normalized Laplacian of the
network. Denoting the eigenvalues of Lrw

G by λi in increasing
order 0 = λ1 � λ2 � · · · � λn, the spectral decomposition of
Lrw
G is expressed as follows:

Lrw
G =

n∑
i=1

λiθ
�
i θi, (7)

where θi is the eigenvector associated with λi. Therefore, the
solution for Eq. (1) can be written as follows:

pG (τ |i) =
n∑

i=1

exp (−λiτ )uiθ
�
i θi. (8)

From Eq. (8), each eigenvalue λi of Lrw
G is associated with a

decaying mode in the diffusion process with the characteristic
timescale τ = 1/λi. Therefore, if there are large gaps between
eigenvalues, for example, if the k0 smallest eigenvalues {λ1 =
0, . . . , λk0} are greatly separated from the remaining eigenval-
ues (λk0  λk0+1 = λsep), we can ignore the terms associated
with {λk0+1, . . . , λn} in Eq. (8) at τ satisfying τλsep � 1. Thus
there is no significant change in the formation of clusters or
loops in the mapped point cloud PG (τ ), nor in the formation
of communities in the network at the τ scale. Therefore, as a
heuristic method, if we consider τmax such that τmaxλsep � 1,
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FIG. 10. Kernel Fisher discriminant ratio κ calculated from the three-dimensional persistence diagrams of one-dimensional holes for the
time-evolving Drosophila melanogaster gene regulatory networks. Transition time points are detected in the sliding windows spanning between
two different developmental stages. In each window, the transition time point tc is the time index of the maximum κ value marked with the
orange point of the dashed line. (a) Windows from the embryonic stage to the larval stage with time points 26 → 36 (tc = 28), 27 → 37
(tc = 28), and 28 → 38 (tc = 31). (b) Windows from the larval stage to the pupal stage with time points 36 → 46 (tc = 41), 37 → 47 (tc = 41),
and 38 → 48 (tc = 41). (c) Windows from the pupal stage to the adulthood stage with time points 54 → 64 (tc = 59), 55 → 65 (tc = 59), and
56 → 66 (tc = 59).

the structure of the network is well characterized via the
scale-variant topological features.

Here, we verify the above consideration by distinguishing
the network of the Barabási-Albert (BA) growth model [72]
with its configuration network. The network is initialized with
m0 nodes and no edges. At each time step, each new node
is added with no more than m0 links to the existing nodes in
the network. The probability that a new node is connected to
an existing node is proportional to the degree of the existing
node. Note that both the BA networks and their configuration
networks have a scale-free property with degree exponent 3.
We set the number of nodes to 128, vary the number of initial
nodes m0 = 1, 2, . . . , 50, and generate 10 networks via this
process for each value of m0. The 10 networks generated
at each m0 are split into two parts, with five networks for
training and the remaining five for testing. Figure 11 depicts
eigenvalues λk such that 0.0 � λk � 0.5 for (a) BA networks
and (b) scale-free configuration networks. The colors of the
points correspond to values of m0 = 1, 2, 3, 4, 5, 6. From
Fig. 11, we can identify the value of λsep to separate the
eigenvalues for each network. The smallest λsep values for
BA networks and configuration networks are λBA

sep ≈ 0.18 and
λconf

sep ≈ 0.16, respectively. Therefore, τmax should be set to
τmaxλ

BA
sep � 1 and τmaxλ

conf
sep � 1, for instance, τmaxλ

BA
sep > 10

and τmaxλ
conf
sep > 10, or τmax � 65.

For each τmax in {5, 10, 15, . . . , 95, 100}, we compute
three-dimensional persistence diagrams of one-dimensional
holes with τ1 = 1, τ2 = 2, τ3 = 3, . . . , τK = τmax. The line in
Fig. 12 depicts the average test accuracy over 100 random
train-test splits at each value of τmax. The shaded area indicates
the confidence intervals of one standard deviation calculated

FIG. 11. Eigenvalues λk such that 0 � λk � 0.5 for (a) Barabási-
Albert (BA) networks and (b) scale-free configuration networks.
The colors of the points correspond to values of m0 = 1, 2, 3, 4, 5, 6
(number of initial nodes in the BA growth model). The value of λsep

to effectively separate eigenvalues is identified for each network. The
smallest λsep values for the BA networks and configuration networks
are λBA

sep ≈ 0.18 and λconf
sep ≈ 0.16, respectively, as marked.

032308-11



TRAN, VO, AND HASEGAWA PHYSICAL REVIEW E 100, 032308 (2019)

FIG. 12. Classification of networks generated from the Barabási-
Albert model with their configuration networks using scale-variant
topological features. The line depicts the average test accuracy over
100 random train-test splits at each value of τmax. The shaded
area indicates the confidence intervals of one standard deviation
calculated using the same ensemble of runs. The inset highlights the
transition in accuracy over τmax = 20–50.

using the ensemble of runs. In general, increasing τmax serves
to increase classification accuracy because the diffusion pro-
cess gathers more information about the network structure.
There is a transition in classification accuracy with large devi-
ations when τmax increases from 30 to 40. To demonstrate this
transition in more detail, we plot τmax = 20, 21, . . . , 49, 50 in
the inset of Fig. 12. For τmax < 30, only microscale structures
are considered in the features, which has a small effect on the
differences between networks. The transition occurs when the
mesoscale structures are considered. For τmax > 40, the devi-
ation is reduced as the mesoscale structures are revealed. For
sufficiently large τmax (τmax � 65), the method achieves high
accuracy ranging from 94% to 94.5%. This observation agrees
with the above-mentioned heuristic for determining τmax.

We have demonstrated above that, with appropriate selec-
tion of τmax, our method can distinguish BA networks from
their corresponding configuration networks. Additionally, our
method can also distinguish BA networks from the networks
generated using the scale-free configuration model of de-
gree exponent 3. Here, we set the number of nodes to 200
and generate 100 networks using the scale-free configuration
model of degree exponent 3. To compare with a network
density of similar magnitude, we set m0 = 1, 2, 3, 4, 5, and
generate 20 networks for each value of m0 in the BA model.
For each τmax in {5, 10, 15, . . . , 95, 100}, we compute three-
dimensional persistence diagrams of one-dimensional holes
with τ1 = 1, τ2 = 2, τ3 = 3, . . . , τK = τmax. In each model,
the 100 networks are split into two parts, with 50 networks
for training and the remaining 50 for testing. The line in
Fig. 13 depicts the average test accuracy over 100 random
train-test splits at each value of τmax. The shaded area indicates
the confidence intervals of one standard deviation calculated
using the ensemble of runs. For sufficiently large τmax (τmax �
20), the method achieves high accuracy ranging from 96%
to 98%. Note that τmax can be determined using the same
aforementioned heuristic process.

IV. CONCLUDING REMARKS AND DISCUSSION

Our study mainly aimed to represent the variation of topo-
logical scales, capture the nondyadic interactions, and provide

FIG. 13. Classification of networks generated from the Barabási-
Albert model with networks generated from the scale-free config-
uration model of degree exponent 3. The line depicts the average
test accuracy over 100 random train-test splits at each value of τmax.
The shaded area indicates the confidence intervals of one standard
deviation calculated using the same ensemble of runs.

robustness against noise in characterizing the structure of
complex networks. Here, we proposed a general framework
for constructing the scale-variant topological features from
the diffusion process exhibited in networks. The scale-variant
topological features do not directly correspond to the com-
mon statistical measures that are constructed from the dyadic
interactions between nodes at a single fixed topological scale.
Rather, our features encode the information of both dyadic
and nondyadic interactions in networks at variant topological
scales.

In the networks’ classification, our features acted as strong
factors to identify the networks. Theoretically, we derived
a strong mathematical guarantee for the robustness of these
features with respect to the perturbations applied to the net-
works. Through several experiments, we provided an em-
pirical evidence for the effectiveness of these features in
applications, such as classification of real-world networks and
detection of transition points, with respect to the topological
structure in time-evolving networks. The results suggested
that the observation of the topological features induced from
the network dynamics over variant scales can characterize the
structure and provide important insights for understanding the
functionality of networks.

In our experiments, the scale-variant topological features
were constructed from zero-dimensional and one-dimensional
holes. In principle, we can compute the features from higher-
dimensional holes that represent nondyadic interactions, in-
volving a larger number of nodes in each interaction. How-
ever, to investigate the features from high-dimensional holes,
the Vietoris-Rips filtration used in our study can consist
of a large number of simplices. More precisely, to con-
sider l-dimensional holes, the Vietoris-Rips filtration has size
O(Nl+2) of the number of simplices. Herein, N is the number
of nodes in the network. This observation shows the difficulty
of using the features from l-dimensional holes (l � 2) for
networks with a large number of nodes. On the contrary
and as demonstrated in this paper, we found it sufficient to
use l-dimensional holes with l = 0, 1 in practical applica-
tions. Furthermore, one can replace the Vietoris-Rips filtration
with the Witness filtration [73] or the approximation of the
Vietoris-Rips filtration [74] for more efficient computations.
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We employed recent algorithmic improvements to efficiently
compute the persistence diagrams with the core implementa-
tion referenced from the Ripser libary [75].

Another point to discuss is the selection of the maximum
diffusion timescale. In our experiments, our method was
only tested for small and medium-sized networks with less
than 5000 nodes per network. For larger networks, a longer
diffusion timescale must be explored. This consideration will
increase the computational cost of computing persistence
diagrams and the kernel. However, this limitation can be
mitigated by increasing the sampling interval to take discrete
values of the timescale while keeping the maximum timescale
sufficiently large. It is also possible to study the process of tak-
ing values of timescales based on the spectral decomposition
of the normalized Laplacian of the network.

Our study is motivated by Ref. [26], in which the diffusion
geometry from the diffusion process is used to reveal func-
tional clusters in a network. Based on random walk dynamics,
the diffusion distance between a pair of nodes in a network
is defined and averaged in a range of timescales to model the
underlying geometry of the network. However, the variation
in network structure over the diffusion timescale is not dis-
cussed. In Ref. [71], a random walk process corresponding
to the natural dynamics of a system focuses on recovering
dynamically meaningful communities in the network. Our

approach involves a diffusion process similar to that men-
tioned in Refs. [26,71]; however, it mainly focuses on the
systematic representation of networks via topological data
analysis by tracking the variation of the topological structures
along timescales of the diffusion process.

In general, our study presented a unified analysis of com-
plex networks. This study paves several opportunities for
designing effective algorithms in network science, such as
an investigation of more complicated network structures. For
instance, we can employ our framework to study different
aspects of multiplex networks, or to study the structural
reducibility of a multilayer network while preserving its dy-
namics and function.
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APPENDIX A: CONSTRUCTION OF VIETORIS-RIPS
FILTRATION OF A NETWORK

We define and describe in Fig. 14 the process of extracting
topological features of a complex network at each specific

FIG. 14. Exemplary of Vietoris-Rips filtration constructed from a complex network G at a specific timescale τ (τ = 1 in this example).
We map nodes v1, . . . , vN of the network G to a point cloud of N points pG (τ |1), . . . , pG (τ |N ) through a diffusion dynamics described by
the random walk Laplacian Lrw

G . (a) Diffusion distance matrix �τ of size N × N , whose element �i j is the Euclidean distance between points
pG (τ |i) and pG (τ | j). (b) A complex is built over a set of points if the pairwise distances between them are less than or equal to a threshold
parameter ε. If ε = 0, we have the discrete points. As ε takes the increasing sequence values of diffusion distance �i j , the hole patterns
such as connected components (zero-dimensional hole) or loops (one-dimensional hole) can appear or disappear over this filtration. The
lifetime of these hole patterns are described as blue bars (for zero-dimensional holes) and red bars (for one-dimensional holes). These bars
begin at the values of ε when the holes appear, then end at values when the holes disappear. (c) The corresponding persistence diagrams for
zero-dimensional and one-dimensional holes. The birth scale and the death scale are represented for the values of ε at the emergence and the
disappearance of the holes.

032308-13



TRAN, VO, AND HASEGAWA PHYSICAL REVIEW E 100, 032308 (2019)

timescale τ . At each τ , we calculate the diffusion distance
matrix �τ of size N × N , whose element �i j is the Euclidean
distance between points pG (τ |i) and pG (τ | j) [Fig. 14(a)].
If ε = 0, the nodes of the network can be considered dis-
crete points. As we increase ε, new pairwise connections
and simplices may appear when ε meets each value of �i j .
We obtain a filtration as a sequence of embedded simpli-
cial complexes. Hole patterns such as connected components
(zero-dimensional holes) or loops (one-dimensional holes)
can appear or disappear over this filtration. For instance, in
Fig. 14(b), at ε = 0, we have six separated nodes considered
as six separated connected components, but, at ε = 0.407,
three nodes are connected with each other; thus two connected
components disappear at this scale. We can describe these
patterns as two blue bars started at scale 0 and ended at
scale 0.407. The same explanation with the red bar started
at scale 0.428 and ended at scale 0.430, which represents
the emergence of loop pattern (v1 → v2 → v3 → v5 → v1) at
ε = 0.428 and the disappearance at ε = 0.430. Figure 14(c)
illustrates the corresponding persistence diagrams for zero-
dimensional holes and one-dimensional holes, where the
birth-scale and the death-scale are represented for the values
of ε at the emergence and the disappearance of the holes.

APPENDIX B: PROOF OF THE STABILITY OF THE
SCALE-VARIANT TOPOLOGICAL FEATURES

We prove the result in Eq. (4). First, we introduce the con-
cept of the bottleneck distance between two two-dimensional
diagrams. Let X and Y be finite sets of points embedded
in the Euclidean space Rn. Denote their two-dimensional
persistence diagrams for l-dimensional holes as S (2)

(l ) (X ) and

S (2)
(l ) (Y ), respectively. We consider all matchings, γ , such that

a point on one diagram is matched to a point on the other dia-
gram or to its projection on the line b = d in two-dimensional
space. The bottleneck distance d (2)

B between S (2)
(l ) (X ) and

S (2)
(l ) (Y ) is defined as the infimum of the longest matched

infinity-norm distance over all matchings, γ :

d (2)
B

[
S (2)

(l ) (X ),S (2)
(l ) (Y )

] = inf
γ

max
(q(1),q(2) )∈γ

‖q(1) − q(2)‖∞. (B1)

Here, ‖q(1) − q(2)‖∞ = max (|b1 − b2|, |d1 − d2|) for which
q(1) = (b1, d1) and q(2) = (b2, d2).

The bottleneck distance between the two-dimensional per-
sistence diagrams satisfies the following inequality [33]:

d (2)
B

[
S (2)

(l ) (X ),S (2)
(l ) (Y )

]
� 2dH(X,Y ), (B2)

where dH(X,Y ) is the Hausdorff distance given as

dH(X,Y ) = max
{

max
x∈X

min
y∈Y

d (x, y), max
y∈Y

min
x∈X

d (x, y)
}
. (B3)

Here, d (x, y) is the Euclidean distance between two points x, y
in Rn.

Given two three-dimensional persistence diagrams as
E and F , consider all matchings ψ such that a point
on one diagram is matched to a point on the other
diagram or to its projection on the plane b = d . For
each pair (q(1), q(2) ) ∈ ψ for which q(1) = (b1, d1, τ1)
and q(2) = (b2, d2, τ2), we define the relative infinity-
norm distance between q(1) and q(2) as d (∞)

ξ (q(1), q(2) ) =

max (|b1 − b2|, |d1 − d2|, ξ |τ1 − τ2|), where ξ is a positive
rescaling coefficient introduced to adjust the scale difference
between the pointwise distance and time. The bottleneck
distance, d (3)

B,ξ (E , F ), is defined as the infimum of the longest
matched relative infinity-norm distance over all matchings ψ :

d (3)
B,ξ (E , F ) = inf

ψ
max

(q(1),q(2) )∈ψ
d (∞)

ξ (q(1), q(2) ). (B4)

For each τ ∈ T and two networks G,H with the same
number N of nodes, we first prove the following inequality:

d (2)
B

[
D(2)

(l ),τ (G), D(2)
(l ),τ (H)

]
� 2τ

∥∥Lrw
G − Lrw

H
∥∥

2. (B5)

Here, two two-dimensional persistence diagrams D(2)
l,τ (G) and

D(2)
l,τ (H) are calculated for l-dimensional holes from two

point clouds PG (τ ) = {pG (τ |1), . . . , pG (τ |N )} and PH(τ ) =
{pH(τ |1), . . . , pH(τ |N )}, respectively.

Since D(2)
(l ),τ (G)=S(l )(PG (τ )) and D(2)

(l ),τ (H)=S(l )(PH(τ )),
we apply Eq. (B2) to have

d (2)
B

[
D(2)

(l ),τ (G), D(2)
(l ),τ (H)

] = d (2)
B [S(l )(PG (τ )),S(l )(PH(τ ))]

� 2dH[PG (τ ), PH(τ )]. (B6)

From the definition of the Hausdorff distance, we have

dH[PG (τ ), PH(τ )] = max
{

max
i

min
j

d[pG (τ |i), pH(τ | j)],

max
j

min
i

d[pG (τ |i), pH(τ | j)]
}

(B7)

� max
{

max
i

d[pG (τ |i), pH(τ |i)], max
j

d[pG (τ | j), pH(τ | j)]
}

= max
i

d[pG (τ |i), pH(τ |i)]. (B8)

Since pG (τ |i) = ui exp(−τLrw
G ) and pH(τ |i) = ui

exp(−τLrw
H ), we have

d[pG (τ |i), pH(τ |i)] = ‖ui(e
−τLrw

G − e−τLrw
H )‖2 (B9)

� ‖ui‖2‖e−τLrw
G − e−τLrw

H ‖2 (B10)

= ‖e−τLrw
G − e−τLrw

H ‖2. (B11)

We write the difference of the matrix exponential in terms of
an integral [32],

‖e−τLrw
G − e−τLrw

H ‖2 =
∥∥∥∥

∫ τ

0
e−Lrw

G (τ−t )Ee−Lrw
H t dt

∥∥∥∥
2

(B12)

�
∫ τ

0
‖e−Lrw

G (τ−t )Ee−Lrw
H t‖2dt (B13)

� ‖E‖2

∫ τ

0
‖e−Lrw

G (τ−t )‖2‖e−Lrw
H t‖2dt, (B14)

where E = Lrw
G − Lrw

H . We know that −Lrw
G is a negative

semidefinite matrix with the largest eigenvalue equal to 0. It
implies that the largest eigenvalue of e−Lrw

G (τ−t ) is equal to
1, and hence ‖e−Lrw

G (τ−t )‖2 = 1. We obtain the same result
with −Lrw

H , i.e., ‖e−Lrw
H t‖2 = 1. Then, from Eq. (B11) and

Eq. (B14), we have

d[pG (τ |i), pH(τ |i)] � ‖E‖2

∫ τ

0
1dt (B15)

= τ‖E‖2 = τ
∥∥Lrw

G − Lrw
H

∥∥
2. (B16)
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From Eq. (B6), Eq. (B8), and Eq. (B16), we have the result in
Eq. (B5).

Let �τ be the set of matchings defined in Eq. (B1) be-
tween two two-dimensional persistence diagrams D(2)

(l ),τ (G)

and D(2)
(l ),τ (H). For each collection � = {γ1, γ2, . . . , γK |

γi ∈ �τi , i = 1, 2, . . . , K}, we construct the matching ψ be-
tween two three-dimensional persistence diagrams D(3)

(l ) (G)

and D(3)
(l ) (H), such that, for each (q(1), q(2) ) ∈ ψ , then q(1) =

(b1, d1, τ ), q(2) = (b2, d2, τ ), and (q(1)
γ , q(2)

γ ) ∈ γ , where
q(1)

γ = (b1, d1), q(2)
γ = (b2, d2), and γ ∈ � ∩ �τ . Let � be

a set of all matchings ψ constructed this way. From the
definition of the bottleneck distance, we have the following
inequality:

d (3)
B,ξ

[
D(3)

(l ) (G), D(3)
(l ) (H)

]
� inf

ψ∈�
max

(q(1),q(2) )∈ψ
d (∞)

ξ (q(1), q(2) ).

(B17)
For (q(1), q(2) ) ∈ ψ , we have

d (∞)
ξ (q(1), q(2) ) = max{|b1 − b2|, |d1 − d2|, ξ |τ − τ |}

(B18)

= max{|b1 − b2|, |d1 − d2|} (B19)

= ∥∥q(1)
γ − q(2)

γ

∥∥
∞ (B20)

and Eq. (B17) becomes

d (3)
B,ξ

[
D(3)

(l ) (G), D(3)
(l ) (H)

]
� max

τ∈T
inf

γ∈�τ

max
(q(1)

γ ,q(2)
γ )∈γ

∥∥q(1)
γ − q(2)

γ

∥∥
∞

(B21)

= max
τ∈T

d (2)
B

[
D(2)

(l ),τ (G), D(2)
(l ),τ (H)

]
. (B22)

From Eq. (B5) and Eq. (B22), we obtain Eq. (4) in the
main text, which is the stability property of our scale-variant
features.

APPENDIX C: SELECTING PARAMETERS
FOR THE KERNEL

In the kernel Kσ,ξ defined in Eq. (5), we set the
rescale coefficient to ξ = σ and present here a heuristic
method to select the bandwidth σ . Given the kernel
values calculated from the three-dimensional persistence
diagrams D(3)

(l ),1, D(3)
(l ),2, . . . , D(3)

(l ),M of l-dimensional
holes, we denote σ 2

s = median{(bi − b j )2 + (di − d j )2 |
(bi, di, τi ), (b j, d j, τ j ) ∈ D(3)

(l ),s} with s = 1, 2, . . . , M. We set

σ as σ 2 = 1
2 median{σ 2

s | s = 1, . . . , M} such that 2σ 2 takes
values close to many (bi − b j )2 + (di − d j )2 values.

APPENDIX D: KERNEL FISHER DISCRIMINANT RATIO

Consider a collection of three-dimensional diagrams
D(l ) = {D(3)

(l ),1, D(3)
(l ),2, . . . , D(3)

(l ),M} of l-dimensional holes.
Since Kσ,ξ is a positive-definite kernel on D(l ) [31], there
exists a Hilbert space Hb and a mapping � : D(l ) −→ Hb such
that, for E ∈ D(l ), � maps E to a function �E ∈ Hb that
satisfies

∀E , F ∈ D(l ),Kσ,ξ (E , F ) = 〈�E ,�F 〉Hb . (D1)

Here, Hb is a real inner product space of function f : D(l ) −→
R, and thus is a complete metric space with respect to the
distance induced by the inner product 〈·, ·〉Hb .

Given an index s > 1, the kernel Fisher discriminant ratio
κM,s(D(l ) ) is a statistical quantity to measure the dissimilarity
between two classes assumptively defined by two sets of dia-
grams having index before and from s [36]. The corresponding
empirical mean and covariance functions in Hb associated
with the data in D(l ) having index before and from s are
defined as

μ̂1 = 1

s − 1

s−1∑
i=1

�D(3)
(l ),i

, (D2)

�̂1 = 1

s − 1

s−1∑
i=1

{
�D(3)

(l ),i
− μ̂1

} ⊗ {
�D(3)

(l ),i
− μ̂1

}
, (D3)

μ̂2 = 1

M − s + 1

M∑
i=s

�D(3)
(l ),i

, (D4)

�̂2 = 1

M − s + 1

M∑
i=s

{
�D(3)

(l ),i
− μ̂2

} ⊗ {
�D(3)

(l ),i
− μ̂2

}
. (D5)

Here, f ⊗ g for two functions f , g ∈ Hb is defined for all
functions h ∈ Hb as ( f ⊗ g)h = 〈g, h〉Hb

f .
The kernel Fisher discriminant ratio κM,s(D(l ) ) is defined

as

κM,s(D(l ) )

= (s − 1)(M − s + 1)

M
〈μ̂2− μ̂1, (�̂+ ηI)−1(μ̂2 − μ̂1)〉Hb,

(D6)

where η is a regularization parameter and �̂ = s−1
M �̂1 +

M−s+1
M �̂2. Here, the index s achieving the maximum of

κM,s(D(l ) ) corresponds to the estimated transition point.
We set η = 10−1, 10−1, 10−5 in the experiments of

the Girvan-Newman (GN) network, Lancichinetti-Fortunato-
Radicchi (LFR) network, and Drosophila melanogaster net-
work, respectively.

APPENDIX E: COMMON MEASURES FOR A NETWORK

For each network, we calculate the following 18 common
measures: the density (the ratio of the existing to the possible
edges), the transitivity [13] (the proportion of triangles), the
diameter (the maximum eccentricity), the radius (the mini-
mum eccentricity), the degree assortativity coefficient [47],
the global efficiency [46], the number of connected parts,
the average clustering coefficient, the average number of
triangles that include a node as a vertex, the average local
efficiency [46], the average edge betweenness centrality [48],
the average node betweenness centrality [45], the average
node closeness centrality [45], the average eccentricity, the
average shortest paths, the average degree centrality [45], the
maximum modularity which is obtained by Louvain heuristic
[37,43], and the average of global mean first-passage times of
random walks on the network [76]. We normalize the mea-
sures in the range of [0, 1] using the min-max normalization
[i.e., f∗ = ( f∗ − fmin)/( fmax − fmin), where fmin, fmax are the
minimum and the maximum values of a measure in the data].
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APPENDIX F: GRAPH KERNEL METHODS

We describe the graph kernel methods used in the main
text. The implementations of these graph kernels can be found
in Ref. [49].

1. Random walk kernels

The random walk graph kernels measure the similarity
between a pair of graphs based on the number of equal-
length walks in two graphs. Given two unlabeled graphs
G and G ′ with their vertex and edge sets as (V, E ) and
(V ′, E ′), respectively, the direct product graph G× = (V×, E×)
of G and G ′ is a graph with the node set V× = {(v, v′) |
v ∈ V, v′ ∈ V ′} and the edge set E× = {[(va, v

′
a), (vb, v

′
b)] |

(va, vb) ∈ E, (v′
a, v

′
b) ∈ E ′}.

The KStepRW kernel is the k-step random walk kernel Kk
×

defined as

Kk
×(G,G ′) =

|V×|∑
i, j=1

k∑
m=0

[λmW m
×]i j, (F1)

where W × is a weight matrix of G× and λ0, . . . , λk is a
sequence of positive, real-valued weights. In our experiments,
we set k = 2 and λ0 = λ1 = λ2 = 1.0.

The GeometricRW kernel is a specific case of the k-step
random walk kernel, when k goes to infinity and the weights
are the geometric series, i.e., λm = λm (λ = 0.05 in our exper-
iments). The GeometricRW kernel is defined as

KGR(G,G ′) =
|V×|∑

i, j=1

∞∑
m=0

[λmW m
×]i j =

|V×|∑
i, j=1

[(I − λW ×)−1],

(F2)

where I is an identity matrix of size |V×| × |V×|.
The ExponentialRW kernel is a specific case of the k-

step random walk kernel, when k goes to infinity and the
weights are the exponential series, i.e., λm = βm

m! (β = 0.1 in
our experiments). The ExponentialRW kernel is defined as

KEX(G,G ′) =
|V×|∑

i, j=1

∞∑
m=0

[
(βW ×)m

m!

]
i j

=
|V×|∑

i, j=1

[eβW × ]i j . (F3)

2. ShortestPath kernel

The ShortestPath kernel compares all pairs of the shortest
path lengths from G and G ′ defined as

KSP(G,G ′) =
∑

vi,v j∈G

∑
v′

k ,v
′
l ∈G ′

δ(d (vi, v j ), d (v′
k, v

′
l )), (F4)

where d (vi, v j ) and d (v′
k, v

′
l ) are the lengths of the shortest

path between nodes vi and v j in G and the shortest path
between nodes v′

k and v′
l in G ′, respectively. Here, δ(x, y) = 1

if x = y and 0 if x �= y.

3. Graphlet kernel

A size-k graphlet is an induced and nonisomorphic sub-
graph of size k. Let Sk = {G1, . . . , GNk } be a set of size-k
graphlets, where Nk denotes the number of unique graphlets
of size k. For an unlabeled graph G (the graph does not contain
attributes for nodes), we define a vector f G of length Nk such
that the ith component of f G denotes the frequency of graphlet
Gi appearing as a subgraph of G. Given two unlabeled graphs
G and G ′, the graphlet kernel is defined as

KGK(G,G ′) = 〈 f G, f G ′ 〉, (F5)

where 〈·, ·〉 represents the Euclidean dot product. We set k = 4
for MUTAG, BZR, DHFR, and FRANKENSTEIN data sets
and k = 3 for the other data sets.

4. Weisfeiler-Lehman kernel

The Weisfeiler-Lehman kernel decomposes a graph into its
subtree patterns and compares these patterns in two graphs.
For an unlabeled graph G, all vertexes v of G are initial-
ized with label ϕ(v) = 0. We iterate over each vertex v and
its neighbor to create a multiset label as ϕ(i)(v) such that
ϕ(1)(v) = ϕ(v), and ϕ(i) with i > 1 is defined as ϕ(i)(v) =
[ϕ(i)(v), Q(i−1)

v ], where Q(i−1)
v are the sorted labels of v’s

neighbors. To measure the similarity between graphs, we
count the cooccurrences of the labels in both graphs for h
iterations with the kernel defined as

KWL(G,G ′) = 〈1G, 1G ′ 〉. (F6)

Here, 1G is the vector concatenation of h vertex label his-
tograms 1(1)

G , . . . , 1(h)
G in h iterations. We set h = 5 in our

experiments.
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