$u(x, t)=$ Temperature at point x and time t
$\alpha^{2}=$ thermal diffusivity constant
PDE: $\quad \alpha^{2} u_{x x}=u_{t} \quad$ for $0 \leq x \leq L$ and $t>0$
Boundary values: $u(0, t)=0, \quad u(L, t)=0 \quad$ for $t>0$
Initial values: $u(x, 0)=f(x)$ for $0 \leq x \leq L$.
Suppose $u(x, t)=X(x) T(t)$
Plug in: $u_{x x}=X^{\prime \prime}(x) T(t)$ and $u_{t}=X(x) T(t)$
Thus $\alpha^{2} X^{\prime \prime}(x) T(t)=X(x) T^{\prime}(t)$
Separate Variables: $\frac{X^{\prime \prime}(x)}{X(x)}=\frac{1}{\alpha^{2}} \frac{T^{\prime}(t)}{T(t)}$
Note $\frac{X^{\prime \prime}(x)}{X(x)}$ is a function of x
and $\frac{1}{\alpha^{2}} \frac{T^{\prime}(t)}{T(t)}$ is a function of t.
$\frac{X^{\prime \prime}(x)}{X(x)}=\frac{1}{\alpha^{2}} \frac{T^{\prime}(t)}{T(t)}=-\lambda$
Thus $\frac{X^{\prime \prime}(x)}{X(x)}=-\lambda$ and $\frac{1}{\alpha^{2}} \frac{T^{\prime}(t)}{T(t)}=-\lambda$
Thus $X^{\prime \prime}(x)=-\lambda X(x)$ and $T^{\prime}(t)=-\alpha^{2} \lambda T(t)$
Thus we obtain two inear homogeneous ODEs:
$X^{\prime \prime}(x)+\lambda X(x)=0$ and $T^{\prime}(t)+\alpha^{2} \lambda T(t)=0$
Boundary values: $u(0, t)=0, \quad u(L, t)=0 \quad$ for $t>0$
$u(0, t)=X(0) T(t)=0, \quad$ for $t>0$
If $T(t)=0$ for $t>0$, then $u(x, t)=X(x) T(t)=0$ for all t, x
A boring solution which might not satisfy initial condition:

$$
u(x, 0)=f(x) \quad \text { for } 0 \leq x \leq L
$$

Thus $T(t) \neq 0$ for all t and hence $X(0)=0$

Boundary values: $u(0, t)=0, \quad u(L, t)=0 \quad$ for $t>0$
$u(L, t)=X(L) T(t)=0, \quad$ for $t>0$
If $T(t)=0$ for $t>0$, then $u(x, t)=X(x) T(t)=0$ for all t, x
A boring solution which might not satisfy initial condition:

$$
u(x, 0)=f(x) \quad \text { for } 0 \leq x \leq L
$$

Thus $T(t) \neq 0$ for all t and hence $X(L)=0$
$X^{\prime \prime}(x)+\lambda X(x)=0, \quad X(0)=0, \quad X(L)=0$
$T^{\prime}(t)+\alpha^{2} \lambda T(t)=0$
The trivial solution $X(x)=0$ for all x satisfies all homogeneous linear ODE's and also satisfies our boundary conditions. But then

$$
u(x, t)=X(x) T(t)=0 \text { for all } t, x
$$

A boring solution which might not satisfy initial condition:

$$
u(x, 0)=f(x) \quad \text { for } 0 \leq x \leq L
$$

Solve $T^{\prime}(t)+\alpha^{2} \lambda T(t)=0$
characteristic equation: $r+\alpha^{2} \lambda=0$
Thus $r=-\alpha^{2} \lambda$
Thus $T(t)=C e^{-\alpha^{2} \lambda t}$
By the 2nd order linear homogeneous ODE

$$
\lambda_{n}=\left(\frac{n \pi}{L}\right)^{2} \quad n=1,2,3, \ldots
$$

Thus $T(t)=C e^{-\alpha^{2}\left(\frac{n \pi}{L}\right)^{2} t}=C e^{-t\left(\frac{\alpha n \pi}{L}\right)^{2}}$
$T(t)=C e^{-t\left(\frac{\alpha n \pi}{L}\right)^{2}}$

$$
\begin{aligned}
& u(x, t)=\sum_{n=1}^{\infty} c_{n} e^{-t\left(\frac{\alpha n \pi}{L}\right)^{2}} \sin \left(\frac{n \pi x}{L}\right) \\
& u(x, 0)=\sum_{n=1}^{\infty} c_{n} \sin \left(\frac{n \pi x}{L}\right)=f(x)
\end{aligned}
$$

Note: $u(x, 0)$ is the Fourier sine series for f defined on $[0, L]$

$$
\lim _{t \rightarrow+\infty} u(x, t)=
$$

PDE: $\quad \alpha^{2} u_{x x}=u_{t} \quad$ for $0 \leq x \leq L$ and $t>0$
Boundary values: $u(0, t)=T_{1}, \quad u(L, t)=T_{2} \quad$ for $t>0$
Initial values: $u(x, 0)=f(x)$ for $0 \leq x \leq L$.

$$
v(x)=\left(\frac{T_{2}-T_{1}}{L}\right) x+T_{1}
$$

$w(t, x)=u(t, x)-v(x)$
$()=,()()$,

