Solve: $y^{\prime \prime}+4=0, y(0)=-2, y^{\prime}(0)=0$
$r^{2}+4=0$ implies $r^{2}=-4$. Thus $r= \pm 2 i$.
Since $r=0 \pm 2 i, y=c_{1} \cos (2 t)+c_{2} \sin (2 t)$.
Then $y^{\prime}=-2 c_{1} \sin (2 t)+2 c_{2} \cos (2 t)$
$y(0)=-2:-2=c_{1} \cos (0)+c_{2} \sin (0)$ implies $-2=c_{1}$
$y^{\prime}(0)=0: 0=-2 c_{1} \sin (0)+2 c_{2} \cos (0)$ implies $0=c_{2}$
Thus IVP solution: $y=-2 \cos (2 t)$
Section 8-3 : Periodic Functions \& Orthogonal Functions
This is going to be a short section. We just need to have a brief discussion about a couple of ideas that we'll be dealing with on occasion as we move into the next topic of this chapter.

Periodic Function The first topic we need to discuss is that of a periodic function. A function is said to be periodic with period T if the following is true,

$$
f(x+T)=f(x) \quad \text { for all } x
$$

