1.) Circle T for true and F for false.
[4] 1a.) An equation for the plane through the three points $(2,4,-3),(3,7,-1),(4,3,0)$ is $11 x+y-7 z=56$
$11(4)+3-7(0) \neq 56$
[4] 1b.) If the cost function $C(x, y)$ of a box with base of length x and height y is given by

$$
C(x, y)=0.1\left(x y+\frac{100}{y}+\frac{100}{x}\right)
$$

then C is an independent variable and x and y are dependent variables.
[12] 2.) Find the arc length of the curve $x=\sin (2 t), y=\cos (2 t), z=8 t$ from $t=0$ to $t=\pi$.
$s=\int_{a}^{b} \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}+\left[z^{\prime}(t)\right]^{2}} d t=\int_{0}^{\pi} \sqrt{[2 \cos (2 t)]^{2}+[-2 \sin (2 t)]^{2}+[8]^{2}} d t$

$$
=\int_{0}^{\pi} \sqrt{4 \cos ^{2}(2 t)+4 \sin ^{2}(2 t)+64} d t=\int_{0}^{\pi} \sqrt{4+64} d t=\int_{0}^{\pi} \sqrt{68} d t=\left.\sqrt{68} t\right|_{0} ^{\pi}=\sqrt{68} \pi
$$

