1.) Circle T for true and F for false.
[4] 1a.) If \vec{a} and \vec{b} are vectors in \mathbb{R}^{3}, then $\vec{a} \times \vec{b}=-(\vec{b} \times \vec{a})$.
[4] 1b.) The arc length s along the smooth curve with poisition vector $\vec{r}(t)=x(t) \vec{i}+y(t) \vec{j}+z(t) \vec{k}$ from $\vec{r}(a)$ to $\vec{r}(b)$ is, by definition

$$
s=\int_{a}^{b} \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}+\left[z^{\prime}(t)\right]^{2}} d t
$$

2.) Determine whether or not the four points $A(5,2,-3), B(6,4,0), C(7,5,1)$, and $D(14,14,18)$ are coplanar. If not find the volume of the parallelepiped spanned by $\overrightarrow{A B}, \overrightarrow{A C}$, and $\overrightarrow{A D}$.
$\overrightarrow{A B}=(6,4,0)-(5,2,-3)=(1,2,3)$
$\overrightarrow{A C}=(7,5,1)-(5,2,-3)=(2,3,4)$
$\overrightarrow{A D}=(14,14,18)-(5,2,-3)=(9,12,21)$
$\left|\begin{array}{ccc}1 & 2 & 3 \\ 2 & 3 & 4 \\ 9 & 12 & 21\end{array}\right|=\left|\begin{array}{cc}1 & 2-2 \\ 2 & 3-4 \\ 9 & 12-18 \\ \hline & 4-6 \\ 2\end{array}\right|=\left|\begin{array}{ccc}1 & 0 & 0 \\ 2 & -1 & -2 \\ 9 & -6 & -6\end{array}\right|=\left|\begin{array}{cc}-1 & -2 \\ -6 & -6\end{array}\right|=(-1)(-6)-(-6)(-2)=6-12=-6$
Note most row/column operations change the determinant. Make sure you know which does and which does not.

Thus the volume of the parallelepiped spanned by $\overrightarrow{A B}, \overrightarrow{A C}$, and $\overrightarrow{A D}$ is $|-6|=6$.
1.) Circle T for true and F for false.
[4] 1a.) The partial derivative value $f_{x}(a, b)$ is the slope of a line tangent to a curve on which y is constant and which passes through the point $(a, b, f(a, b))$ on the surface $z=f(a, b)$.
[4] 1b.) The graph of the function $f(x, y)=2-3 x+4 y$ is a plane.
[12] 2.) Find the unit tangent and normal vectors to the curve $y=x^{3}$ at the point $(-1,-1)$.
$y^{\prime}=3 x^{2}$
$y^{\prime}(-1)=3(-1)^{2}=3$. Thus slope of tangent line at $(-1,-1)$ is 3 . Thus direction of tangent vector is $($ run, rise $)=(1,3)=\left(\frac{d x}{d x}, \frac{d y}{d x}\right)$

Hence unit tangent vector $=\frac{(1,3)}{|(1,3)|}=\frac{(1,3)}{\sqrt{1^{2}+3^{2}}}=\frac{(1,3)}{\sqrt{10}}=\left(\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}}\right)$
Normal vector is perpendicular to tangent vector.
Thus normal vector is either $\left(-\frac{3}{\sqrt{10}}, \frac{1}{\sqrt{10}}\right)$ or $\left(\frac{3}{\sqrt{10}},-\frac{1}{\sqrt{10}}\right)$ as these are both unit vectors whose dot product with the tangent vector is 0 . By picture below, the unit normal vector is $\left(\frac{3}{\sqrt{10}},-\frac{1}{\sqrt{10}}\right)$

Thus unit tangent vector is $\left(\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}}\right)$
unit normal vector is $\left(\frac{3}{\sqrt{10}},-\frac{1}{\sqrt{10}}\right)$

Math 3550 Quiz 1 Form C Feb 7, 2020
1.) Circle T for true and F for false.
[4] 1a.) An equation for the plane through the three points $(2,4,-3),(3,7,-1),(4,3,0)$ is $11 x+y-7 z=46$
$11(2)+4-7(-3)=26+21=47$
$11(3)+7-7(-1)=$
$11(4)+3-7(0)=$
[4] 1b.) If the cost function $C(x, y)$ of a box with base of length x and height y is given by

$$
C(x, y)=0.1\left(x y+\frac{100}{y}+\frac{100}{x}\right)
$$

then C is an independent variable and x and y are dependent variables.
[12] 2.) Find the arc length of the curve $x=\sin (2 t), y=\cos (2 t), z=8 t$ from $t=0$ to $t=\pi$.

$$
\begin{aligned}
s & =\int_{a}^{b} \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}+\left[z^{\prime}(t)\right]^{2}} d t=\int_{0}^{\pi} \sqrt{[2 \cos (2 t)]^{2}+[-2 \sin (2 t)]^{2}+[8]^{2}} d t \\
& =\int_{0}^{\pi} \sqrt{4 \cos (2 t)+4 \sin ^{2}(2 t)+64} d t=\int_{0}^{\pi} \sqrt{4+64} d t=\int_{0}^{\pi} \sqrt{68} d t=\int_{0}^{\pi} 4 \sqrt{17} d t=\left.4 \sqrt{17} t\right|_{0} ^{\pi}=4 \sqrt{17} \pi
\end{aligned}
$$

