Contour plot:

WolframAlpha

Suppose $F(x, y)=\left(f_{1}(x, y), f_{2}(x, y)\right)$
Recall that the Jacobian matrix of F is

$$
\begin{aligned}
F^{\prime}(x, y)=D F & =\left[\begin{array}{ll}
\frac{\partial f_{1}}{\partial x} & \frac{\partial f_{1}}{\partial y} \\
\frac{\partial f_{2}}{\partial x} & \frac{\partial f_{2}}{\partial y}
\end{array}\right] \\
& =\left[\begin{array}{ll}
\frac{\partial f_{1}}{\partial x} & \frac{\partial f_{1}}{\partial y} \\
\frac{\partial f_{2}}{\partial x} & \frac{\partial f_{2}}{\partial y}
\end{array}\right]
\end{aligned}
$$

12.10: 2nd order derivative test

Suppose $z=f(x, y)$
Recall the derivative matrix of f is $D f=\left[\begin{array}{ll}\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y}\end{array}\right]$
Hessian matrix $=$
$D^{2} f=\left[\begin{array}{ll}\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right) & \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right) \\ \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right) & \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)\end{array}\right]=\left[\begin{array}{cc}\frac{\partial^{2} f}{\partial x^{2}} & \frac{\partial^{2} f}{\partial y \partial x} \\ \frac{\partial^{2} f}{\partial x \partial y} & \frac{\partial^{2} f}{\partial y^{2}}\end{array}\right]=\left[\begin{array}{cc}\frac{\partial^{2} f}{\partial x^{2}} & \frac{\partial^{2} f}{\partial x \partial y} \\ \frac{\partial^{2} f}{\partial y \partial x} & \frac{\partial^{2} f}{\partial y^{2}}\end{array}\right]=H f$
Determinant of the Hessian $=\frac{\partial^{2} f \partial^{2} f}{\partial x^{2}} \frac{\partial y^{2}}{}-\left[\frac{\partial^{2} f}{\partial y \partial x}\right]^{2}=f_{x x} f_{y y}-\left[f_{x y}\right]^{2}$
Recall $f_{x y}=\left(f_{x}\right)_{y}=\left(f_{y}\right)_{x}=f_{y x}$ if 2nd order partials are continuous
Theorem 1: Two-variable second derivative test
If 2 nd order partials of f are continuous in a neighborhood of a critical point (a, b), then

1. If $\operatorname{det}(H f(a, b))=\Delta>0$, then

$$
\begin{aligned}
& \text { if } f_{x x}>0 \text {, then } f(a, b) \text { is a local minimum. } \\
& \text { if } f_{x x}<0 \text {, then } f(a, b) \text { is a local maximum. }
\end{aligned}
$$

2. If $\operatorname{det}(H f(a, b))=\Delta<0$, then $f(a, b)$ is neither a local minimum nor a local maximum

Note if $\operatorname{det} \operatorname{Hf}(a, b)=\Delta=0$, then the 2 nd derivative test gives no information.

Example: $f(x, y)=f(x, y)=x^{2}+y^{2}+p x y=\left(x+\frac{p}{2} y\right)^{2}-\left(\frac{p^{2}}{4}-1\right) y^{2}$
See chalkboard and/or
https://www.khanacademy.org/math/multivariable-calculus/applications-of-multivariable-derivatives/optimizing-multivariable-functions/a/second-partial-derivative-test

