\magnification 2200 \parindent 0pt \parskip 10pt \pageno=1 \hsize 7truein \hoffset -0.2truein \voffset -0.4truein \vsize 9.7truein \def\u{\vskip -3.6pt} \def\v{\vskip -3pt} \def\w{\vskip 20pt} {\bf Second order differential equation:} \v Linear equation with constant coefficients: \vskip -10pt \hskip 10pt If the second order differential equation is \vskip 5pt \centerline{$ay'' + by' + cy = 0$,} \vskip 5pt \centerline{then $y = e^{rt}$ is a solution} Need to have two independent solutions. Solve the following IVPs: 1.) $y'' - 6y' + 9y = 0$ \hfill $y(0) = 1, ~ y'(0) = 2$ \w 2.) $4y'' - y' + 2y = 0$ \hfill $y(0) = 3, ~ y'(0) = 4$ \w 3.) $4y'' + 4y' + y = 0$ \hfill $y(0) = 6, ~ y'(0) = 7$ \w 4.) $2y'' - 2y = 0$ \hfill $y(0) = 5, ~y'(0) = 9$ \eject $ay'' + by' + cy = 0$, ~~$y = e^{rt}$, then \vskip -8pt $ar^2e^{rt} + bre^{rt} + ce^{rt} = 0$ implies $ar^2 + br + c = 0$, \v Suppose $r = r_1, r_2$ are solutions to $ar^2 + br + c = 0$ \centerline{$r_1, r_2 = {-b \pm \sqrt{b^2 - 4ac} \over 2a}$} If $r_1 \not= r_2$, then $b^2 - 4ac \not= 0$. Hence a general solution is {$y = c_1e^{r_1t} + c_2e^{r_2t}$} \vskip 5pt \hrule If $b^2 - 4ac > 0$, general solution is $y = c_1e^{r_1t} + c_2e^{r_2t}$. \vskip 5pt \hrule If $b^2 - 4ac < 0$, change format to linear combination of real-valued functions instead of complex valued functions by using Euler's formula. general solution is $y = c_1 e^{dt} cos (nt) + c_2 e^{dt} sin (nt)$ where $r = d \pm in$ \vskip 5pt \hrule If $b^2 - 4ac = 0$, $r_1 = r_2$, so need 2nd (independent) solution: $te^{r_1t}$ Hence general solution is $y = c_1e^{r_1t} + c_2te^{r_1t}$. \vskip 5pt \hrule Initial value problem: use $y(t_0) = y_0$, $y'(t_0) = y_0'$ to solve for $c_1, c_2$ to find unique solution. \eject Derivation of general solutions: \vskip 10pt \hrule If $b^2 - 4ac > 0$ we guessed $e^{rt}$ is a solution and noted that any linear combination of solutions is a solution to a homogeneous linear differential equation. \vskip 10pt \hrule Section 3.3: If $b^2 - 4ac < 0$, : Changed format of $y = c_1e^{r_1t} + c_2e^{r_2t}$ to linear combination of real-valued functions instead of complex valued functions by using Euler's formula: \centerline{$e^{it} = cos(t) + i sin(t)$} Hence $e^{(d + in)t} =e^{dt}e^{int} = e^{dt}[cos (nt) + i sin (nt)]$ Let $r_1 = d + in$, $r_2 = d - in$ $y = c_1e^{r_1t} + c_2e^{r_2t} $ \vskip -5pt $= c_1e^{dt}[cos (nt) + i sin (nt)] +c_2e^{dt}[cos (-nt) + i sin (-nt)] $ \vskip -5pt $=c_1e^{dt}cos (nt) + ic_1 e^{dt} sin (nt) + c_2e^{dt}cos (nt) - ic_2 e^{dt} sin (nt) $ \vskip -5pt =$(c_1 + c_2)e^{dt}cos (nt) + i(c_1 - c_2) e^{dt}sin (nt)$ \vskip -5pt \hskip 28pt$=k_1 e^{dt} cos (nt) + k_2e^{dt} sin (nt)$ \vskip 10pt \hrule \eject Section 3.4: If $b^2 - 4ac = 0$, then $r_1 = r_2$. \hfil \break Hence one solution is $y = e^{r_1t}$ Need second solution. \u If $y = e^{rt}$ is a solution, $y = ce^{rt}$ is a solution. \vskip 3pt \centerline{How about $y = v(t)e^{rt}$?} \u\u $y' = v'(t)e^{rt} + v(t)re^{rt}$ \u\u $y'' = v''(t)e^{rt} + v'(t)re^{rt} + v'(t)re^{rt} + v(t)r^2e^{rt}$ \u\u $\hskip 14pt = v''(t)e^{rt} + 2v'(t)re^{rt} + v(t)r^2e^{rt} $ $ay'' + by' + cy = 0$ \u {$a(v''e^{rt} + 2v're^{rt} + v r^2e^{rt}) + b(v'e^{rt} + vre^{rt}) + cve^{rt}= 0$} \u $a(v''(t) + 2v'(t)r + v(t)r^2) + b(v'(t) + v(t)r) + cv(t) = 0$ \u $av''(t) + 2av'(t)r + av(t)r^2 + bv'(t) + bv(t)r + cv(t) = 0$ \u $av''(t) + (2ar+b)v'(t) + (ar^2 + br + c)v(t) = 0$ \u $av''(t) + (2a({-b \over 2a})+b)v'(t) + 0 = 0$ \rightline{since $ar^2 + br + c = 0$ and $r = {-b \over 2a}$} \u $av''(t) + (-b + b)v'(t) = 0$. \hfill Thus $av''(t) = 0$. \u Hence $v''(t) = 0$ and $v'(t) = k_1$ and $v(t) = k_1t + k_2$ \vskip 6pt \centerline{Hence $v(t)e^{r_1t} = (k_1t + k_2)e^{r_1t}$ is a soln} \vskip -6pt Thus $te^{r_1t}$ is a nice second solution. \u Hence general solution is $y = c_1 e^{r_1t}+ c_2 te^{r_1t}$ \end \vskip 10pt \vskip 10pt \hrule \vskip 1pt \hrule \vskip 10pt 3.6 Nonhomogeneous Equations: $ay'' + by' + cy = g(t)$ Method of Undetermined Coefficients. \end