\magnification 2200 \parindent 0pt \parskip 10pt \pageno=1 \hsize 7truein \hoffset -0.2truein \vsize 9.2truein \def\u{\vskip -3pt} \def\v{\vskip -3pt} To solve differential equations: \v {\bf First order differential equation:} Method 1: Separate variables. Method 2: If linear [$y' + p(t)y = g(t)$], multiply equation by an integrating factor $u = e^{\int p(t)dt}$. \centerline{$y'u + p(t)uy = ug(t)$} \centerline{$ (uy)' = ug(t)$} {\bf Second order differential equation:} \v Method 1: If there is no independent variable (t) OR if there is no dependent variable (y), transform into first order differential equation: \centerline{let $v = {dy \over dt} = y'$. Then $v' = \underline{\hskip 1in}$} If there are 3 variables, note: ${dv \over dt}= {dv \over dy}{dy \over dt} = v{dv \over dy}$ Method 2 (linear equation with constant coefficients): If the second order differential equation is \centerline{$ay'' + by' + cy = 0$,} \centerline{then $y = e^{rt}$ is a solution} Need to have two independent solutions. $ay'' + by' + cy = 0$, ~~$y = e^{rt}$, then \vskip -8pt $ar^2e^{rt} + bre^{rt} + ce^{rt} = 0$ implies $ar^2 + br + c = 0$, Suppose $r = r_1, r_2$ are solutions to $ar^2 + br + c = 0$ \v If $r_1 \not= r_2$, then $b^2 - 4ac \not= 0$. Hence a general solution is {$y = c_1e^{r_1t} + c_2e^{r_2t}$} \vskip 10pt \hrule If $b^2 - 4ac > 0$, general solution is $y = c_1e^{r_1t} + c_2e^{r_2t}$. \vskip 10pt \hrule If $b^2 - 4ac < 0$, change format to linear combination of real-valued functions instead of complex valued functions by using Euler's formula. general solution is $y = c_1 e^{dt} cos (nt) + c_2 e^{dt} sin (nt)$ where $r = d \pm in$ \vskip 10pt \hrule If $b^2 - 4ac = 0$, $r_1 = r_2$, so need 2nd (independent) solution: $te^{r_1t}$ Hence general solution is $y = c_1e^{r_1t} + c_2te^{r_1t}$. \vskip 10pt \hrule Initial value problem: use $y(0) = y_0$, $y'(0) = y_0'$ to solve for $c_1, c_2$ to find unique solution. Derivation of general solutions: \vskip 10pt \hrule If $b^2 - 4ac > 0$ we guessed $e^{rt}$ is a solution and noted that any linear combination of solutions is a solution to a homogeneous linear differential equation. \vskip 10pt \hrule If $b^2 - 4ac < 0$, : Changed format of $y = c_1e^{r_1t} + c_2e^{r_2t}$ to linear combination of real-valued functions instead of complex valued functions by using Euler's formula: \centerline{$e^{it} = cos(t) + i sin(t)$} Hence $e^{(d + in)t} =e^{dt}e^{int} = e^{dt}[cos (nt) + i sin (nt)]$ Let $r_1 = d + in$, $r_2 = d - in$ $y = c_1e^{r_1t} + c_2e^{r_2t} $ \vskip -5pt $= c_1e^{dt}[cos (nt) + i sin (nt)] +c_2e^{dt}[cos (-nt) + i sin (-nt)] $ \vskip -5pt $=c_1e^{dt}cos (nt) + ic_1 e^{dt} sin (nt) + c_2e^{dt}cos (nt) - ic_2 e^{dt} sin (nt) $ \vskip -5pt =$(c_1 + c_2)e^{dt}cos (nt) + i(c_1 - c_2) e^{dt}sin (nt)$ \vskip -5pt \hskip 28pt$=k_1 e^{dt} cos (nt) + k_2e^{dt} sin (nt)$ \vskip 10pt \hrule If $b^2 - 4ac = 0$, then $r_1 = r_2$. \hfil \break Hence one solution is $y = e^{r_1t}$ Need second solution. \u If $y = e^{rt}$ is a solution, $y = ce^{rt}$ is a solution. \u How about $y = v(t)e^{rt}$? $y' = v'(t)e^{rt} + v(t)re^{rt}$ $y'' = v''(t)e^{rt} + v'(t)re^{rt} + v'(t)re^{rt} + v(t)r^2e^{rt}$ \u $\hskip 14pt = v''(t)e^{rt} + 2v'(t)re^{rt} + v(t)r^2e^{rt} $ $ay'' + by' + cy = 0$ $a(v''(t)e^{rt} + 2v'(t)re^{rt} + v(t)r^2e^{rt}) + b(v'(t)e^{rt} + v(t)re^{rt}) + c(v(t)e^{rt}) = 0$ $a(v''(t) + 2v'(t)r + v(t)r^2) + b(v'(t) + v(t)r) + cv(t) = 0$ $av''(t) + 2av'(t)r + av(t)r^2 + bv'(t) + bv(t)r + cv(t) = 0$ $av''(t) + (2ar+b)v'(t) + (ar^2 + br + c)v(t) = 0$ $av''(t) + (2a({-b \over 2a})+b)v'(t) + 0 = 0$ Since $ar^2 + br + c = 0$ and $r = {-b \over 2a}$ $av''(t) + (-b + b)v'(t) = 0$ $av''(t) = 0$ Hence $v''(t) = 0$ $v'(t) = k_1$ $v(t) = k_1t + k_2$ Hence $v(t)e^{r_1t} = (k_1t + k_2)e^{r_1t}$ is a soln Hence $te^{r_1t}$ is a nice second solution. Hence general solution is $y = c_1 e^{r_1t}+ c_2 te^{r_1t}$ \vskip 10pt \vskip 10pt \hrule \vskip 1pt \hrule \vskip 10pt 3.6 Nonhomogeneous Equations: $ay'' + by' + cy = g(t)$ Method of Undetermined Coefficients. \end