\magnification 2200 \parindent 0pt \parskip 10pt \pageno=1 \hsize 7truein \hoffset -0.35truein \vsize 9.2truein \def\u{\vskip -5pt} \def\v{\vskip 10pt} Linear algebra pre-requisites you must know. ${\bf b_1, ..., b_n}$ are linearly independent if \u $c_1{\bf b_1} + c_2{\bf b_2} + ... + c_n{\bf b_n} = d_1{\bf b_1} + d_2{\bf b_2} + ... + d_n{\bf b_n}$ \centerline{implies $c_1 = d_1$, $c_2 = d_2$..., $c_n = d_n$.} or equivalently, ${\bf b_1, ..., b_n}$ are linearly independent if \u $c_1{\bf b_1} + c_2{\bf b_2} + ... + c_n{\bf b_n} = 0$ implies $c_1 = c_2 = ... c_n$. \v\v Example 1: ${\bf b_1} = (1, 0, 0)$, ${\bf b_2} = (0, 1, 0)$, ${\bf b_3} = (0, 0, 1)$. \v \centerline{$(1, 2, 3) \not= (1, 2, 4)$.} \v \centerline{If $(a, b, c) = (1, 2, 3)$ then $a = 1$, $b = 2$, $c = 3$.} \v\v Example 2: ${\bf b_1} = 1$, ${\bf b_2} = t$, ${\bf b_3} = t^2$. \v \centerline{$1 + 2t + 3t^2 \not= 1 + 2t + 4t^2$.} \v \centerline{If $a + bt + ct^2 = 1 + 2t + 3t^2$ then $a = 1$, $b = 2$, $c = 3$.} \eject Application: Partial Fractions ${ 4\over (x^2 + 1)(x - 3)} = {Ax + B \over x^2 + 1} + {C \over x - 3}$ $\hskip .7in = {(Ax + B)(x-3) + C(x^2 + 1) \over (x^2 + 1)(x - 3)}$ Hence ${ 4\over (x^2 + 1)(x - 3)} = {(Ax + B)(x-3) + C(x^2 + 1) \over (x^2 + 1)(x - 3)}$ \v \centerline{Thus $4 = (Ax + B)(x-3) + C(x^2 + 1)$} \v \centerline{$ {4 = Ax^2 + Bx - 3Ax - 3B + Cx^2 + C}$} \v \centerline{${4 = (A + C)x^2 + (B - 3A)x - 3B + C }$} I.e., $0x^2 + 0x + 4 = {(A + C)x^2 + (B - 3A)x - 3B + C }$ Thus $0 = A + C$, $0 = B - 3A$, $4 = -3B + C$. $C = -A$, $B = 3A$,\hfil \break $4 = -3(3A) + -A$ implies $4 = -10A$. \hfil \break Hence $A = -{2 \over 5}$, $B = 3(-{2 \over 5}) = -{6 \over 5}$, $C = {2 \over 5}$. \v \centerline{Thus, ${ 4\over (x^2 + 1)(x - 3)} = {-{2 \over 5}x - {6 \over 5} \over x^2 + 1} + {{2 \over 5} \over x - 3}$} \hskip 1.65in = ${-{2}x - {6} \over 5(x^2 + 1)} + {{2} \over 5(x - 3)}$} \end