Defn: A set V together with two operations, called addition and scalar multiplication is a vector space if the following vector space axioms are satisfied for all vectors \mathbf{u}, \mathbf{v}, and \mathbf{w} in V and all scalars, c, d in R.

Vector space axioms:
a.) $\mathbf{u}+\mathbf{v}$ is in V
b.) $c \mathbf{u}$ is in V
c.) $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
d.) $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
e.) There is a vector, denoted by $\mathbf{0}$, in V such that $\mathbf{u}+\mathbf{0}=\mathbf{u}$ for all \mathbf{u} in V
f.) For each \mathbf{u} in V, there is an element, denoted by $-\mathbf{u}$, in V such that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$
g.) $(c d) \mathbf{u}=c(d \mathbf{u})$
h.) $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$
i.) $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$
j.) $\mathbf{1 u}=\mathbf{u}$

Examples:
1.) R^{k} with the usual operations of addition and scalar multiplication is a vector space.
2.) The set $M^{k, n}$, the set of all $k \times n$ matrices with the usual operations of addition and scalar multiplication is a vector

Linear Algebra Review: Eigenvalues and Eigenvectors

Defn: λ is an eigenvalue of the linear transformation $T: V \rightarrow V$ if there exists a nonzero vector \mathbf{x} in V such that $T(\mathbf{x})=\lambda \mathbf{x}$. The vector \mathbf{x} is said to be an eigenvector corresponding to the eigenvalue λ.

Example: Let $T(\mathbf{x})=\left[\begin{array}{ll}4 & 1 \\ 5 & 0\end{array}\right] \mathbf{x}$.

Note $\left[\begin{array}{ll}4 & 1 \\ 5 & 0\end{array}\right]\left[\begin{array}{r}-1 \\ 5\end{array}\right]=\left[\begin{array}{r}1 \\ -5\end{array}\right]=-1\left[\begin{array}{r}-1 \\ 5\end{array}\right]$
Thus -1 is an eigenvalue of A and $\left[\begin{array}{r}-1 \\ 5\end{array}\right]$ is a corresponding eigenvector of A.

Note $\left[\begin{array}{ll}4 & 1 \\ 5 & 0\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}5 \\ 5\end{array}\right]=5\left[\begin{array}{l}1 \\ 1\end{array}\right]$
Thus 5 is an eigenvalue of A and $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is a corresponding eigenvector of A.

Note $\left[\begin{array}{ll}4 & 1 \\ 5 & 0\end{array}\right]\left[\begin{array}{l}2 \\ 8\end{array}\right]=\left[\begin{array}{l}16 \\ 10\end{array}\right] \neq k\left[\begin{array}{l}2 \\ 8\end{array}\right]$ for any k.
Thus $\left[\begin{array}{l}2 \\ 8\end{array}\right]$ is NOT an eigenvector of A.

MOTIVATION:

Note $\left[\begin{array}{l}2 \\ 8\end{array}\right]=\left[\begin{array}{r}-1 \\ 5\end{array}\right]+3\left[\begin{array}{l}1 \\ 1\end{array}\right]$
Thus $A\left[\begin{array}{l}2 \\ 8\end{array}\right]=A\left(\left[\begin{array}{r}-1 \\ 5\end{array}\right]+3\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)=A\left[\begin{array}{r}-1 \\ 5\end{array}\right]+3 A\left[\begin{array}{l}1 \\ 1\end{array}\right]$

$$
=-1\left[\begin{array}{r}
-1 \\
5
\end{array}\right]+3 \cdot 5\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
16 \\
10
\end{array}\right]
$$

Finding eigenvalues:
Suppose $A \mathbf{x}=\lambda \mathbf{x} \quad$ (Note A is a SQUARE matrix).
Then $A \mathbf{x}=\lambda I \mathrm{x}$ where I is the identity matrix.
Thus $\lambda I \mathrm{x}-A \mathbf{x}=(\lambda I-A) \mathbf{x}=\mathbf{0}$
Thus if $A \mathbf{x}=\lambda \mathbf{x}$ for a nonzero \mathbf{x}, then $(\lambda I-A) \mathbf{x}=\mathbf{0}$ has a nonzero solution.

Thus $\operatorname{det}(\lambda I-A) \mathbf{x}=0$.
Note that the eigenvectors corresponding to λ are the nonzero solutions of $(\lambda I-A) \mathbf{x}=\mathbf{0}$.

Thus to find the eigenvalues of A and their corresponding eigenvectors:

Step 1: Find eigenvalues: Solve the equation

$$
\operatorname{det}(\lambda I-A)=0 \text { for } \lambda
$$

Step 2: For each eigenvalue λ_{0}, find its corresponding eigenvectors by solving the homogeneous system of equations

$$
\left(\lambda_{0} I-A\right) \mathbf{x}=0 \text { for } \mathbf{x}
$$

Defn: $\operatorname{det}(\lambda I-A)=0$ is the characteristic equation of A.
Thm 3: The eigenvalues of an upper triangular or lower triangular matrix (including diagonal matrices) are identical to its diagonal entries.

Defn: The eigenspace corresponding to an eigenvalue λ_{0} of a matrix A is the set of all solutions of $\left(\lambda_{0} I-A\right) \mathbf{x}=\mathbf{0}$.

Note: An eigenspace is a vector space
The vector $\mathbf{0}$ is always in the eigenspace.
The vector $\mathbf{0}$ is never an eigenvector.
The number 0 can be an eigenvalue.
Thm: A square matrix is invertible if and only if $\lambda=0$ is not an eigenvalue of A.

